ELEC/COMP 576:
Deep Reinforcement Learning

Ankit B. Patel
Baylor College of Medicine (Neuroscience Dept.)
Rice University (ECE Dept.)

Reinforcement
_earning

What i1s Reinforcement
L earning

* Reinforcement Learning (RL) is a framework for
decision-making

* Have an agent with acts in an environment
 Each action influences the agent’s future state
e SucCcess is measured by reward

* Find actions that maximise your future reward

Agent and Environment

—— L —
\ X +

e Agent P XX =,
observation /f :. 0 _'t;__ YN \ 1 action
e EXxecutes action NN\ T
Ot a R S o o ay
* Receives observation ==
\‘.’.'
e Receives reward
reward r;

e Environment

e Recelves action

e Sends new observation

e Sends new reward

[David Silver ICML 2016]

Defining the State

e Sequence of observations, rewards, and actions
define experience

O1,r,d1y...ydt—1,0¢, I't

o State is a summary of experiences

St = f(017 ri,d1, ..., dt—1, Ot, rt)

[David Silver ICML 2016]

Components of an RL Agent

e Policy
* Agent's behavior function
* Value Function
 Determine if each state or action is good

e Model

 Agent's representation

Policy

* Policy is the agent’s behavior
* Policy is a map from state to action
e Deterministic g = 7T(S)

» Stochastic 7T(3‘5) — J>[3‘5]

[David Silver ICML 2016]

Value Function

* Value function is a prediction of the future reward

 What will my reward be given this action a from
state s?

 Example: Q-value function

e State s, action a, policy 7T, discount factor 7Y

Q"(s,a) =E |41+ vreq2 + Voregz+ .. | s, al

[David Silver ICML 2016]

Optimal Value Function

 [he goal is to have the maximum achievable

Q*(s,a) = max Q" (s, a) = Q™ (s, a)

 With that, can act optimally with the policy

" (s) = argmax Q*(s, a)

 Optimal value maximises over all the decisions

2
Q*(s,a) = a1+ vy max ryan + 7 Max I3 + ...
t+

dt+1

= rpo1 + v max Q*(s;

dt+1

1aat

1)

[David Silver ICML 2016]

MVoaqel

 The model is learned through experience

 Can act as a proxy for the environment

RL Approaches

e Value-based RL

» Estimate the optimal value Q*(S, a)

« Maximum value achievable under any policy
e Policy-based RL

| X

 Search for the optimal value 7T

e Policy achieving maximum future reward
 Model-based RL

 Build a model of the environment

e Plan using a model

[David Silver ICML 2016]

Deep Reinforcement
_earning

Deep RL

* Jo have Deep RL, we need
 RL + Deep Learning (DL) = Al
 RL defines the objective

DL provides the mechanism to learn

Deep RL

e Can use DL to represent
* Value function
* Policy
* Model

* Optimise loss function via Stochastic Gradient
Descent

Value-Based Deep
Reinforcement Learning

Value-Based Deep RL

* The value function is X
S,a,W) ~ s, a
represented by Q-network with Qs a,w) ~ Q7(s a)

weights w

[David Silver ICML 2016]

Q-Learning

* Optimal Q-values obey Bellman Equation

Q*(s,a) =Ey |r+v max Q(s',a)* | s,a
a/

* Minimise MSE loss via éGD
| = (r+7 max Q(s',a',w) — Q(s, a,w))2
e Diverges due to
* Correlations between samples

 Non-stationary targets

DQN: Atari 2600

action

a;

<

[David Silver ICML 2016]

EXperience Replay

e Remove correlations

e Build dataset from agent’s own

. S1,d1, ", S
experience 1,9, 72,22 ,
S$2,d2, 13,53 — S,a,r,s
e Sample experiences from the S3, az, I, 54

dataset and apply update

Sty dty 414 St+1 — | Sty dt, I't4+1,5t+1

[David Silver ICML 2016]

Benefits of Experience
Replay

* (Greater data efficiency
e Breaks the correlations

e Smoothing out learning and avoiding oscillations or
divergence in parameters

DQN: Atari 2600

End-to-end learning of Q(s,a) from the frames
Input state is stack of pixels from last 4 frames
Output is Q(s,a) for the joystick/button positions
» Varies with different games (~3-18)

Reward is change in score for that step

DQN w/ Experience Replay

Algorithm 1: deep Q-learning with experience replay.
Initialize replay memory D to capacity N
Initialize action-value function Q with random weights 0
Initialize target action-value function Q with weights 0~ = 0
For episode = 1, M do
Initialize sequence s; = {x; } and preprocessed sequence ¢, = ¢(s;)
Fort=1,T do
With probability ¢ select a random action a,
otherwise select a; =argmax, Q(¢(s:),a; 0)
Execute action a; in emulator and observe reward r; and image x; +
Set s . =5,8y,X; 1 and preprocess ¢, , , =¢(s; .)
Store transition (d),,a,,rt,d), , l) inD
Sample random minibatch of transitions (qb)-,a)-,r)-,(ﬁ}- + 1) from D

T if episode terminates at step j+ 1
Set}’) B rj +./ max, Q (¢, 3],al; 0) Other“'ise

2
Perform a gradient descent step on (yj —Q (¢ i) 0)) with respect to the
network parameters 0 |

Every C steps reset Q= Q
End For

sod Sar [Deepmind 2014]

DQN: Atari 2600

* Network architecture and hyper parameters are
fixed across all the games

32 4x4 filters 256 hidden units Fully-connected linear

output layer
| 6 8x8 filters
4x84x84 F

Stack of 4 previous . Fully-connected layer
frames Convolutional layer Convolutional layer of rectified linear units
of rectified linear units of rectified linear units

[David Silver ICML 2016]

DQN: Atari Video

[Jon Juett Youtube]

DQN: Atari Video

[PhysX Vision Youtube]

lmprovements after DQN

* Double DQN

» Current Q-network w is used to select actions

* Older Q-network is w- is used to evaluate actions
* Prioritized reply

o Store experience in priority queue by the DQN
error

lmprovements after DQN

e Duelling Network
* Action-independent value function V(s,v)
e Action-dependent advantage function A(s,a,w)

e Q(s,a) =V(s,v) + A(s,a,w)

lmprovements after DQN

[Marc G. Bellemare Youtube]

General Reinforcement
L earning Architecture

Distributed Memory

[David Silver ICML 2016]

Policy-pbased Deep
Reinforcement Learning

Deep Policy Network
The policy is represented by a network with weights u
a = m(als,u) or a = (s, u)

Define objective function as total discounted reward

L(U) =3 [rl + Y + ’)’21’3 -+ ... | 7T(°, U)]

Optimise objectiva via SGD

Adjust policy parameters u to achieve higher reward

[David Silver ICML 2016]

Policy Gradients
* (Gradient of a stochastic policy
' Olog 7(als, u)

OL(u) (e Y
ou | Ou Q"(s. a)—

* (Gradient of a deterministic policy

OL(u) _ [0Q7(s,a)0a
Ou | Oda Ou

[David Silver ICML 2016]

Actor Critic Algorithm

» Estimate value function Q(s, a, w) ~ Q™ (s, a)

e Update policy parameters u via SGD

0l Ologm(als,u)
Ou ou

ol 0Q(s,a,w) 0a
Ou 0a Ou

Q(s,a,w)

[David Silver ICML 2016]

Asynchronous Advantage
Actor-Critic: Labyrinth

[DeepMind Youtube]

A3C: Labyrinth

End-to-end learning of softmax policy from raw
pixels

Observations are pixels of the current frame

State is an LSTM f(Ol, cees Ot)
Qutputs both value V(s) & softmax over actions 7r(a|s)

Task is to collect apples (+1) and escape (+10)

[David Silver ICML 2016]

Improvements on the
Basic DQN Algorithm

Double DQN

* Double DQN

» Current Q-network w is used to select actions

* Older Q-network is w- is used to evaluate actions
* Prioritized reply

o Store experience in priority queue by the DQN
error

Dueling Network

e Duelling Network
* Action-independent value function V(s,v)
e Action-dependent advantage function A(s,a,w)

e Q(s,a) =V(s,v) + A(s,a,w)

Prioritized Experience
Replay

Algorithm 1 Double DQN with proportional prioritization

1: Input: minibatch k, step-size 7, replay period K and size N, exponents o and 3, budget 7.
2: Initialize replay memory H = 0, A =0, p; = 1

3: Observe S, and choose Ay ~ 7y5(Sp)

4: fort = 1to1 do

5: Observe Sy, R, v

6: Store transition (S;. 1, A; 1, R, Y, St) in ‘H with maximal priority p;, = max;«; p;
7. if t=0 mod K then

8: forj =1tokdo

9: Sample transition j ~ P(j) = p$/ >_, pf

10: Compute importance-sampling weight w; = (N - P(j)) 7/ max; w;

11: Compute TD-error §; = R; + 7 Quarger (S, arg max, Q(Sj,a)) — Q(S;j-1, A1)
12: Update transition priority p; < |d;|

13: Accumulate weight-change A «+ A +w; -4, - VyQ(S; -1, 4;.1)

14: end for

15: Update weights 0 «— 0 +n- A, reset A = ()

16: From time to time copy weights into target network €,,.¢ < 0

17 endif

18: Choose action A; ~ mg(S;)

19: end for

[Schaul et al 2016]

Prioritized Experience
Replay

oracle
rank-based
10 - proportional
— uniform

“f',x"'l%' # e imple

Figure 2: Median number of updates required for Q-learning to learn the value function on the
Blind Cliffwalk example, as a function of the total number of transitions (only a single one of which
was successful and saw the non-zero reward). Faint lines are min/max values from 10 random
initializations. Black is uniform random replay, cyan uses the hindsight-oracle to select transitions,
red and blue use prioritized replay (rank-based and proportional respectively). The results differ
by multiple orders of magnitude, thus the need for a log-log plot. In both subplots it is evident
that replaying experience in the right order makes an enormous difference to the number of updates
required. See Appendix B.1 for details. Left: Tabular representation, greedy prioritization. Right:
Linear function approximation, both variants of stochastic prioritization.

[Schaul et al 2016]

lmprovements after DQN

[Marc G. Bellemare Youtube]

General Reinforcement
L earning Architecture

Distributed Memory

[David Silver ICML 2016]

Policy-pbased Deep
Reinforcement Learning

Deep Policy Network
The policy is represented by a network with weights u
a = m(als,u) or a = (s, u)

Define objective function as total discounted reward

L(U) =3 [rl + Y + ’)’21’3 -+ ... | 7T(°, U)]

Optimise objective via SGD

Adjust policy parameters u to achieve higher reward

[David Silver ICML 2016]

Policy Gradients
* (Gradient of a stochastic policy
' Olog 7(als, u)

OL(u) (e Y
ou | Ou Q"(s. a)—

* (Gradient of a deterministic policy

OL(u) _ [0Q7(s,a)0a
Ou | Oda Ou

[David Silver ICML 2016]

Actor Critic Algorithm

» Estimate value function Q(s, a, w) ~ Q™ (s, a)

e Update policy parameters u via SGD

0l Ologm(als,u)
Ou ou

ol 0Q(s,a,w) 0a
Ou 0a Ou

Q(s,a,w)

[David Silver ICML 2016]

Asynchronous Advantage
Actor-Critic: Labyrinth

[DeepMind Youtube]

A3C: Labyrinth

End-to-end learning of softmax policy from raw
pixels

Observations are pixels of the current frame

State is an LSTM f(Ol, cees Ot)
Qutputs both value V(s) & softmax over actions 7r(a|s)

Task is to collect apples (+1) and escape (+10)

[David Silver ICML 2016]

Model-based Deep
Reinforcement Learning

|_earning Models of the
Environment

e (Generative model of Atari 2600

e |ssues

* Errors in transition model compound over the
trajectory

* Planning trajectory difter from executed
trajectories

* Long, unusual trajectory rewards are totally wrong

[David Silver ICML 2016]

_earning Models of the
Environment

[Junhyuk Oh Youtube]

Newer
Implementations

AlphaGo

a b

Rollout policy SL policy network RL policy network Value network Policy network Value network

z
P Ps P, Vo o P, (@ls) vy (')

) <
- |
ol
E

RO 5
=

3
©

\ \ 5

Q

Human expert positions Self-play positions

Figure 1 | Neural network training pipeline and architecture. a, A fast the current player wins) in positions from the self-play data set.
rollout policy p, and supervised learning (SL) policy network p,, are b, Schematic representation of the neural network architecture used in
trained to predict human expert moves in a data set of positions. AlphaGo. The policy network takes a representation of the board position
A reinforcement learning (RL) policy network p,, is initialized to the SL s as its input, passes it through many convolutional layers with parameters
policy network, and is then improved by policy gradient learning to o (SL policy network) or p (RL policy network), and outputs a probability
maximize the outcome (that is, winning more games) against previous distribution p _(a|s) or p, (a|s) over legal moves a, represented by a
versions of the policy network. A new data set is generated by playing probability map over the board. The value network similarly uses many
games of self-play with the RL policy network. Finally, a value network vy convolutional layers with parameters 6, but outputs a scalar value vy(s’)
is trained by regression to predict the expected outcome (that is, whether that predicts the expected outcome in position s’.

[Deepmind Nature]

Policy and Value Networks

a
701
— 128 filters
g 601 — 192 filters
< 504 256 filters
2 — 384 filters
c 40
s
(CD) 304
[\]
§- 201
< 10+
0

50 51 52 53 54 55 56 57 58 59
Training accuracy on KGS dataset (%)

Figure 2 | Strength and accuracy of policy and value networks.

a, Plot showing the playing strength of policy networks as a function

of their training accuracy. Policy networks with 128, 192, 256 and 384

convolutional filters per layer were evaluated periodically during training;

the plot shows the winning rate of AlphaGo using that policy network

against the match version of AlphaGo. b, Comparison of evaluation

accuracy between the value network and rollouts with different policies.

b
0.50 |
0.45 1 N
g @ 0.40 - IR X S
3 §, 0351 oo Uniform random ~
§ £ 0.30 4 rollout policy
§ % 0054 \F/a;st roIIc::lt p:llcy
—— Value networ
c .
é § 020 SL policy network e
0151 ... RL policy network e
0.10 T T

1I5 l 45 I 75 I 1(I)5l 1555‘ 1I65I 1'95 I 2I25 l 2;55 I>2I85

Move number
Positions and outcomes were sampled from human expert games. Each
position was evaluated by a single forward pass of the value network vy,
or by the mean outcome of 100 rollouts, played out using either uniform
random rollouts, the fast rollout policy p,, the SL policy network p, or
the RL policy network p,. The mean squared error between the predicted
value and the actual game outcome is plotted against the stage of the game
(how many moves had been played in the given position).

[Deepmind Nature]

Monte Carlo Tree Search

d Selection b Expansion C Evaluation d Backup

it it it it

/
e (B B (1) % ﬁ jat

i |
(13 &t
Figure 3 | Monte Carlo tree search in AlphaGo. a, Each simulation is evaluated in two ways: using the value network vg; and by running
traverses the tree by selecting the edge with maximum action value Q, a rollout to the end of the game with the fast rollout policy p, then
plus a bonus u(P) that depends on a stored prior probability P for that computing the winner with function r. d, Action values Q are updated to
edge. b, The leaf node may be expanded; the new node is processed once track the mean value of all evaluations 7(-) and vy(-) in the subtree below
by the policy network p, and the output probabilities are stored as prior that action.

probabilities P for each action. ¢, At the end of a simulation, the leaf node

[Deepmind Nature]

AlphaGo Results

a b
3,500+
3,000+
2,500+
g 2,000
g
o
8 1,500~
1,000
500~
0_
%%% § g g § g %’ Rollouts @
5‘2’:;%’:; = ‘5’ = @ Q Value network @
g © S Policy network @
(0]

Figure 4 | Tournament evaluation of AlphaGo. a, Results of a
tournament between different Go programs (see Extended Data Tables

6-11). Each program used approximately 5s computation time per move.

To provide a greater challenge to AlphaGo, some programs (pale upper
bars) were given four handicap stones (that is, free moves at the start of
every game) against all opponents. Programs were evaluated on an

Elo scale®”: a 230 point gap corresponds to a 79% probability of winning,
which roughly corresponds to one amateur dan rank advantage on
KGS38; an approximate correspondence to human ranks is also shown,

C
3,500 -

3,000

2,500

2,000

1,500

1,000

500

0_
® Y Threads 1 2 4 8 1632 40 — 49— 12 24 40 64

e o o GPUs + 8 i1 1 2 4 8 64112176280
1 11 |

Single machine Distributed

horizontal lines show KGS ranks achieved online by that program. Games
against the human European champion Fan Hui were also included;

these games used longer time controls. 95% confidence intervals are
shown. b, Performance of AlphaGo, on a single machine, for different
combinations of components. The version solely using the policy network
does not perform any search. ¢, Scalability study of MCTS in AlphaGo
with search threads and GPUs, using asynchronous search (light blue) or
distributed search (dark blue), for 2 s per move.

[Deepmind Nature]

ich Move to Make

a Value network b Tree evaluation from value net € Tree evaluation from rollouts

sassssstetantanes [s N [R e,
O iiiﬁﬁﬁiﬁﬁsg 5 e it e -
33835888882222288

$3833sssssassssss i
0 e HOT u
| mES: 3

d Policy network e Percentage of simulations f Principal variation
8 = i i e e RN Lot LT TTTT]]
SSEee O T T e e u
® ® ® ® # S z
o oo |0
21
27 ——1
—®
o o o
O reteH HO —e e O PN ILIN
* Y X}—-HQQ;&- U -

—%%gﬁr s OO —Qg;&w

EEEE |] | N 1

Figure 5 | How AlphaGo (black, to play) selected its move in an d, Move probabilities directly from the SL policy network, p (a|s);
informal game against Fan Hui. For each of the following statistics, reported as a percentage (if above 0.1%). e, Percentage frequency with
the location of the maximum value is indicated by an orange circle. which actions were selected from the root during simulations. f, The

a, Evaluation of all successors s’ of the root position s, using the value principal variation (path with maximum visit count) from AlphaGo’s
network vy(s’); estimated winning percentages are shown for the top search tree. The moves are presented in a numbered sequence. AlphaGo
evaluations. b, Action values Q(s, a) for each edge (s, a) in the tree from selected the move indicated by the red circle; Fan Hui responded with the
root position s; averaged over value network evaluations only (A=0). move indicated by the white square; in his post-game commentary he

¢, Action values Q(s, a), averaged over rollout evaluations only (A =1). preferred the move (labelled 1) predicted by AlphaGo.

[Deepmind Nature]

t Fan

INS

Game 3

H .
AlphaGo (Black), Fan Hui (White)
AlphaGo wins by resignation

Game 2

Game 1

-ive Matches Aga

Fan Hui (Black), AlphaGo (White)

AlphaGo wins by resignation

Fan Hui (Black), AlphaGo (White)

AlphaGo wins by 2.5 points

Py
o082

L)
Vo « w0
w0 N

269968

86
@ b=l (-
Uk

()€)
PO QS

D E
1600
@1474 f\a’@#@#

S D

(216 2
¢m¢®¢wﬁz41+ 3 #ai@'@

<
&

X0

061 02¢
DOCO (-
o PO,
P 86866666

(3B
Biiokect
@ ©

=2J) ©
b
)

@=®

BRI 128287 re
D 2858668
B0 R
323266
R 66662 6682
LOOQOEEOO O
U 4O H O
20006065
5286800800 G

000000
0890009

6088 e68e2"

~a N

8029328989

©
®
©

At bt
DR 2 6889Q000 L2

Game 5

Game 4

AlphaGo (White)

Fan Hui (Black),

AlphaGo (Black), Fan Hui (White)
AlphaGo wins by resignation

AlphaGo wins by resignation

D026

NEEEERYRPS Py
CCARECRmE P Y SN D (Y
Yool [P 138626
e R 579929
w’@#@#m" TOOE 2@
D00 00000006
A S8 L6660 268 38
Ba2R.060.59 00 80
i e
RO 18 [P99.9 99

R 1 e2862 Ve
0880 T8RP 09 88
08 8eea29080
RN A BTN 2

@O D=2Q Q=0 = =@ =

©-®

[Deepmind Nature]

Neural Architecture Search
with Reinforcement Learning

 Uses an RNN to generate model descriptions of the
NNs

e Jrains the RNN with RL to maximize expected
accuracy of generated architectures on validation
set

Neural Architecture Search

Sample architecture A
with probability p

[v

Trains a child network
The controller (RNN) with architecture
A to get accuracy R

{ J

Compute gradient of p and
scale it by R to update
the controller

Figure 1: An overview of Neural Architecture Search.

[Zoph & Le Arxiv 2016]

RNN Controller

Number| Filter | Filter | | Stride | [Stride | |Number Filter |
. |of Filters|, | Height |1 | Width [, | Height [| Width [\ |of Filters|. | Height [\
‘| ‘I .| .l 'l > ‘| ‘l
L A LA LA LA LA LA L A LA
< » <
Layer N-1 Layer N Layer N+1

Figure 2: How our controller recurrent neural network samples a simple convolutional network. It
predicts filter height, filter width, stride height, stride width, and number of filters for one layer and
repeats. Every prediction is carried out by a softmax classifier and then fed into the next time step
as input.

[Zoph & Le Arxiv 2016]

Training with REINFORCE

J(ec) — EP(alzT;Oc)[R]

V6. J ZEP(alT 0)[Va 10gP(at|a(t 1): 13 0)R]
t=1
1 m T
— > > Vo log P(at|ap_1y.1;0c)Re
m
k=1 t=1

Where m is the number of different architectures that the controller samples in one batch and 7' is
the number of hyperparameters our controller has to predict to design a neural network architecture.

[Zoph & Le Arxiv 2016]

Parallel Training

Parameter
Server S

Parameter
Server 2

Parameter
Server 1

Parameters

Controller Controller Controller
Replica 1 Replica 2 e Replica K
Accuracy
R
Child Child Child Child Child | | cnild Child Child | | cnild
Replica 1 Replica2 | | Replica m Replica 1 Replica 2 Replica m Replica 1 Replica 2 Replica m

Figure 3: Distributed training for Neural Architecture Search. We use a set of S parameter servers
to store and send parameters to K controller replicas. Each controller replica then samples m archi-
tectures and run the multiple child models in parallel. The accuracy of each child model is recorded
to compute the gradients with respect to 6., which are then sent back to the parameter servers.

[Zoph & Le Arxiv 2016]

INncrease Architecture
Complexity

N-1 skip connections

—

Number Anchor Filter Filter _ Stride . Stride Anchor Number Filter _
 |of Filters|[t | Point [.| Height [+ | Width [% | Height [+ | Width |1 | Point [\ |of Filters|. | Height [\

NN O
N A N R S N O O R O A

‘I II I‘ ‘l ‘l ‘I ‘l II '| 'I
' Iy Y Y S e a Y R

> < ' ' ' ' —> <«
Layer N-1 Layer N Layer N+1

—

Figure 4: The controller uses anchor points, and set-selection attention to form skip connections.

[Zoph & Le Arxiv 2016]

Constructing the Network

ht
T Add | r:;? 1| Add |, [ReLu 1 Ll oo
": o '-.
Index 2 : : : : : 1 : : : :
: : : : > o > D >
: : : : : : ' : : n <
Tree Tree I : I : I ' I : I : I : I : I : I : I slomet ~)
Index 0 Index 1 ' ' : : : : T S e
g > > > > > > g g e RN
/\ /\ R N NIRRT ST Y Y SR R N ey
A A < > < > < > < —> < —> — §
t-1 Xt t-1 Xt Tree Index 0 Tree Index 1 Tree Index 2 Cell Inject Cell Indices ; = =

Figure 5: An example of a recurrent cell constructed from a tree that has two leaf nodes (base 2)
and one internal node. Left: the tree that defines the computation steps to be predicted by controller.
Center: an example set of predictions made by the controller for each computation step in the tree.
Right: the computation graph of the recurrent cell constructed from example predictions of the
controller.

[Zoph & Le Arxiv 2016]

Results

Model

Depth Parameters

Error rate (%)

Network in Network (Lin et al., 2013) - - 8.81
All-CNN (Springenberg et al., 2014) - - 7.25
Deeply Supervised Net (Lee et al., 2015) - - 7.97
Highway Network (Srivastava et al., 2015) - - 7.72
Scalable Bayesian Optimization (Snoek et al., 2015) - - 6.37
FractalNet (Larsson et al., 2016) 21 38.6M 5.22
with Dropout/Drop-path 21 38.6M 4.60
ResNet (He et al., 2016a) 110 1.7M 6.61
ResNet (reported by Huang et al. (2016b)) 110 1.7M 6.41
ResNet with Stochastic Depth (Huang et al., 2016b) 110 1.7M 5.23
1202 10.2M 491

Wide ResNet (Zagoruyko & Komodakis, 2016) 16 11.0M 4.81
28 36.5M 4.17

ResNet (pre-activation) (He et al., 2016b) 164 1.7M 5.46
1001 10.2M 4.62

DenseNet (L = 40, k = 12) Huang et al. (2016a) 40 1.0M 5.24
DenseNet(L = 100, k = 12) Huang et al. (2016a) 100 7.0M 4.10
DenseNet (L = 100, k£ = 24) Huang et al. (2016a) 100 27.2M 3.74
Neural Architecture Search v1 no stride or pooling 15 4.2M 5.50
Neural Architecture Search v2 predicting strides 20 2.5M 6.01
Neural Architecture Search v3 max pooling 39 7.1M 447
Neural Architecture Search v3 max pooling + more filters 39 32.0M 3.84

Table 1: Performance of Neural Architecture Search and other state-of-the-art models on CIFAR-10.

[Zoph & Le Arxiv 2016]

Reinforcement Learning with
Unsupervised Auxiliary Tasks

e [rain an agent that maximises other pseudo-reward
functions simultaneously by RL

* [hose tasks have to develop in absence of
extrinsic rewards

» Qutperforms previous state-of-the-art on atari

* Averaging 880% expert human performance

UNREAL Agent

O Agent LSTM
(a) Base A3C Agent A Agent Conviet Re—— R+——R ——\

vV vV VT VT

\ \ \ \ v Aux DeConvNet
4@ d /« D Aux FCnet b
4 X Replay Buffer A

ir try1 tri2 t'r+3

tr—3 tr—2 tr—1
(c) Reward Prediction

(b) Plxel Control

Figure 1: Overview of the UNREAL agent. (a) The base agent is a CNN-LSTM agent trained on-policy with
the A3C loss (Mnih et al., 2016). Observations, rewards, and actions are stored in a small replay buffer which
encapsulates a short history of agent experience. This experience is used by auxiliary learning tasks. (b) Pixel
Control — auxiliary policies Q*"* are trained to maximise change in pixel intensity of different regions of the
input. The agent CNN and LSTM are used for this task along with an auxiliary deconvolution network. This
auxiliary control task requires the agent to learn how to control the environment. (¢) Reward Prediction — given
three recent frames, the network must predict the reward that will be obtained in the next unobserved timestep.
This task network uses instances of the agent CNN, and is trained on reward biased sequences to remove the
perceptual sparsity of rewards. (d) Value Function Replay — further training of the value function using the
agent network is performed to promote faster value iteration. Further visualisation of the agent can be found in
https://youtu.be/Uz-zGYrYEjA

[Jaderberg et. al Arxiv 2016]

Auxiliary Control Tasks

Given a set of auxiliary control tasks C, let 7(¢) be the agent’s policy for each auxiliary task ¢ € C and
let 7w be the agent’s policy on the base task. The overall objective 1s to maximise total performance

across all these auxiliary tasks,

arg max Er [Ri:00] + Ac z:]E,,rc R(?C)XJ], (1)
ceC
§Ct)+n S ’y"’ 'r,g °) is the discounted return for auxiliary reward r(¢)

0 is the set of parameters of 7 and all 7(¢)’s

n-step Q-learning loss ES) =

: -(Rt:t—i—n + 7" maxg Q(C)(S'a a',07) — Q(C)(S’ @, 0))2-

[Jaderberg et. al Arxiv 2016]

A

Auxiliary lasks

™) DeepMind Auxiliary Tasks
® Live Play

Pixel Control

Reward Prediction Value Function Replay

Actions Value Function

[Jaderberg et. al Arxiv 2016]

UNREAL Algorithm

Lunrear(0) = Lasc + AVRLVR + Apc) ﬁg) + ARPLRP

auxiliary control loss Lpc

auxiliary reward prediction loss Lrp

replayed value loss Lyr

A3C Loss is minimised on policy

Value function is optimised f

‘OMm

Auxiliary control loss is optimised o

Reward loss is optimised from rebalanced rep

-0

icy from

r'eplayed data

replied data

ay data

[Jaderberg et. al Arxiv 2016]

Human Normalised Performance

Atarl Besults

Atari Performance
Avg. TOP 3 agents

900% _——0880% UNREAL
861% A3C+RP+VR
0,
800% ©853% A3C
700%

600% . 992% Prior. Duel Clip DQN

500%

400%

300%

0.0 0.5 1.0 1.5 2.0 2.5
Steps x10°

Human Normalised Performance

1200%

1000%

800%

600%

400%

200%

0%

0%

20%

Atari Robustness

—— UNREAL
A3C+RP+VR
— A3C

40% 60% 80% 100%
Percentage of Agents in Population

[Jaderberg et. al Arxiv 2016]

Reinforcement Learning with
Unsupervised Auxiliary Tasks Video

[DeepMind Youtube]

Deep Sensorimotor Learning

https://research.googleblog.com/2016/03/deep-learning-for-

robots-learning-from.html

http://www.apple.com
http://www.apple.com

Deep Learning:
I'he Future

Major areas of Focus

Semi-Supervised Learning

Reinforcement Learning & Deep Sensorimotor Learning
Neural Networks with Memory

True Language Understanding (Not Just Statistical)
Deep Learning for Hardware and Systems (Low Power)

- Theory of Deep Learning

Resources

UFLDL Course

Chris Olah's Blog

Google Plus Deep Learning Community

Deep Learning First Textbook

List of Must-Read Papers

http://ufldl.stanford.edu/wiki/index.php/UFLDL_Tutorial
http://colah.github.io
http://www.deeplearningbook.org
https://docs.google.com/document/d/1IXF3h0RU5zz4ukmTrVKVotPQypChscNGf5k6E25HGvA/mobilebasic?pli=1

Future of Work

The Guardian

Future of Work

BOTTLE NECK VARIABLES
SAMPLE PROBABILITY OF HOW COMPUTERISATION MIGHT VARY*
SOCIAL INTELLIGENCE CREATIVITY PERCEPTION AND MANIPULATION
] Dishwasher | Court Clerk 1 Telemarketer

Probability of
Compensation
Probability of
Compensation
Probability of
Compensation

Event ;
P\I/::r?ner Biolo.gist Boilermaker
. Public . Fashion
: Relations : Designer
0 ; 0 ' 0 Surgeon
0% 100% 0% 100% 0% 100%

* Data from the article “Which Careers are most likely to be automated?” By Peter Orr of “80,000 Hours”. It gives a detailed prediction of
what type of jobs will become automated and sensors that machines will not and do not possess in the near future.

Blake Irving’s Blog

Myth
Superintelligence

by 2100 is inevitable
Myth
Superintelligence

by 2100 is impossib

Mon| Tue|Wed] Thr | Fri | Sat |Sun

121131415 161718

1920 «’.zz 3|2
le |2

It may happen in

Myth:

Only Luddites
worry about Al

%

Many top Al
researchers
are concerned

decades, centuries i i
or never: Al experts

disagree & we

simply don’t know

Mythlcal worry:
Al turning evil

Mythical worry:

Al turning conscious

Actual worry:

Al turning competent, Al
with goals
misaligned with ours us

Robots are the
main concern

Misaligned intelligence
is the main concern:

it needs no body, only

an internet connection

O-=0
-000
N P gy
DO0O-=0
) O - -
0 = -
-~ 0O=0

- O

L
Al can't control Intelligence
humans enables control:

we control tigers ‘v

by being smarter
Myth: |
Machines can't A heat-seeking
have goals O missile has

a goal /
Mythlcal worry: Actual worry: PLAN
Superintelligence PAN'C' It's at least !
is just years away decades away, AHEAD!

| W |

but it may take that
long to make it safe ‘ '

Future of Life

