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Outline
• Problem: Many perplexing phenomena in NNs lack clear theoretical 

explanations: 

• Try to understand phenomena with artificial NNs 

• This leads to a new theory for understanding the representation/
learning of NNs  

• “NNs as Splines”, “NNs as Continuous Basis Expansions”

• Then circle back to neuronal networks with Implications/Applications 
to Theoretical & Computational Neuroscience



Issues in the Learning Theory  
of Deep Neural Networks



Unexplained Phenomena
• Problem: Many perplexing phenomena lack theoretical explanations: 

• OverParametrization: The need for Overparametrization for training not 
expressivity 

• Inits: Lottery Ticket Hypothesis 

• Loss Surface: Highly non-convex and yet so many local minima near global 
minima  

• Generalization: Implicit Regularization despite highly underdetermined 
optimization problem 

• Potential Solution: Pass to function space parametrization (spline)



Related Work
• Du et al, Arora et al (2018-): Circumvent dynamics of weights and instead track dynamics of 

predictions (i.e. the approx. function) 

• Neyshabur, Serebro et al (2015-).: Implicit regularization in highly underdetermined optimization 
problems in ML due to parametrization and/or optimization algorithm. Focus on low weight norm 
solutions… recent ICLR 2020 paper characterizing class of low-weight norm ReLu NNs

• Baraniuk et al (2018-19): the Spline Perspective and the Geometry of deep nets 

• Neural Tangent Kernel: Jacot et al NeurIPS 2018, NTK valid in massively overparametrized regime, 
reduces to linear dynamics 

• Double Descent Curve: Belkin et al 2019 show when traditional U-shaped generalization curve is 
replaced by a new doubled curve 

• Williams et al (2019): Similar results re Implicit Reg in Shallow Univariate ReLu NNs; but different 
abstruse parametrization and no results re the initialization and Hessian of loss surface.



To Function Space: 
Reparametrizing Neural Nets 

as Splines



Motivating Function Space

Neural Net 
Params

(Weights & Biases)

Spline
Params

(Breakpoints, Curvatures
& Orientations )

many:1

many:1
• “unfunctional” dof  
• Symmetry Group(“gauge”) is large 

• Mod out “gauge” group or fix gauge dof 
• Every dof matters for the function / loss



What is the role of individual neurons? 
A simple neural net example

We’ll focus on Univariate Shallow/Deep ReLu NNs:

Shallow Univariate ReLu NN



What is the role of individual neurons? 
A simple neural net example

We’ll focus on Univariate Shallow/Deep ReLu NNs:

Shallow Univariate ReLu NN



ReLu Neural Nets as  
Continuous PieceWise Linear (CPWL) Functions

Breakpoint

Delta-Slope
(“Curvature”)

Orientation

Reparametrization from NN to BDSO:

Shallow Univariate ReLu NN



Recasting the Simple ReLu Neural Net as a 
Continuous Piece-Wise Linear (CPWL) Function

Breakpoint

Delta-Slope
(“Curvature”)

Orientation
(right/left)

We’ll focus on Univariate Shallow/Deep ReLu NNs:

Breakpoints+Delta-Slopes
enable the modeling

of curvature

Shallow Univariate ReLu NN Each Breakpoint only “sees” data/residuals
in the direction it is facing/Oriented



Ongoing Work: 
Generalizing ReLU NN to Multivariate Inputs

2-Dimensional Inputs with 
Data Gap

Multivariate Spline 
Parametrization of a 

ReLU NN



Ongoing Work: 
Generalizing to Multivariate Inputs & Arbitrary Activation Functions

Representation of NN: Approximating a Function via
A Continuous Basis Expansion

Neuron 
Response/Activation 

Function

Neuron
Coefficient

Neuron 
Measure

Neuron 
Basis

Function{
Implication: The (well-developed) tools & mathematics of function space 

and basis expansions can be brought to bear on NN problems. 
I’ll talk about this more later if there’s time and interest…



Random Initializations



Joint + Conditional Density  
b/w Breakpoints and Delta-Slopes

Non-obvious correlation b/w
Breakpoint location and curvature



Marginal Density of Delta-Slopes

Empirical Observations

Depth
yields

delta-slopes
closer 
to zero



Marginal Density of Breakpoints

Empirical Observations



Breaking Bad: Mismatch b/w Breakpoints and Function 
Curvature leads to poor optimization with GD…



.. but this can be Rescued by a Better Data-
dependent Initialization of the Breakpoints

Data-Dependent Init:
Exploit Reparam. to Shape 

Breakpoint Density



Loss Surface



Degeneracies in Loss Surface



Overparametrization ==> Lonely Partitions  
==> Global Minima

Lonely

Typical

x

Induced Partition of Inputs

x

Overparametrization



Overparametrization ==> Lonely Partitions  
==> Global Minima



Hessian of the Loss and Degenerate Directions 
If Two Neurons have the same Activation Pattern, Then there will be a Zero Eigenvalue

Simplified Hessian
is a Gram Matrix—> Pos.Semi-Def.…

Critical Points fall into a 6 types:
Local minima (1), Degenerate (5)

…whose generating vectors are…

Properties of Loss Hessian:
• PSD
• PD iff gen. vectors are Linearly Independent
• Has 0 eigenvalues iff vectors are Linearly 

Dependent (flat in that direction, valley)

Remember these neurons…



Gradient Descent:
Suboptimality,  

Breakpoint + Delta-Slope Dynamics,  
& the Role of Depth



How Suboptimal is Gradient Descent?  
Comparisons to Globally Optimal PWL Regression Algos 



Can we improve GD by including global moves? 
Relocating “Bad” Breakpoints During Training Rescues GD



Dynamical Laws for Breakpoints, Curvatures, Fcn



Dynamical Laws for the Function (Neural Outputs): 
Relation to the Neural Tangent Kernel (NTK)

Relation to Neural Tangent Kernel



The Value of Depth: 
Expressivity or Learnability?



Depth doesn’t add much Expressivity…

Consistent with recent surprising findings from Hanin & Rolnick 2019:



…then what is Depth good for? 
Defining & Visualizing Breakpoints in Deep Nets

The Fine Print:
Definition of Active Breakpoints

is more subtle for Deep Nets



What is Depth good for? 
Depth helps with Breakpoint Mobility



What is Depth good for? 
Depth —> Breakpoint Speed, Birth & Death



What is Depth good for? 
Breakpoints in Deeper Nets are more Attracted to Curvature

Deep ReLu Net (4 layers):
Corr(Final BPs, Target Fcn Curvature) = 0.49

For Shallow ReLu Net (1 layer):
Corr(Final BPs, Target Fcn Curvature) = 0.32

Deep nets have higher correlation
b/w Breakpoint and Curvature locations 

than Shallow nets



Generalization:  
Explaining 

Implicit Regularization



Implicit Reg.: Impact of Width for Two Lines
Width = 20 units Width = 40 units Width = 200 units



Implicit Reg.: Impact of Width for Smooth Target



Implicit Reg.: Impact of Width for Sharp Target



Implicit Reg.: Impact of Init Smoothness
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Initial Final
1. Spiky Inits are remembered
thru training and significantly
increase generalization error

2. Going Deeper 
can improve error

but doesn’t always help



Quantifying Implicit Regularization:  
Final Smoothness vs. Init Smoothness & Width

(proportional to Init. Roughness)
Smoothness
Measured via
Roughness:



Dynamical Laws for Breakpoints, Curvatures, Fcn



Dynamical Laws for the Function (Neural Outputs)



A Theoretical Explanation for Implicit Reg.: 
1. Standard Random Inits are very Flat

Smoothness Measured via Roughness:

Smoothness is Highly Concentrated near zero —> Delta-Slopes near zero w.h.p. Width = 200 units



A Theoretical Explanation for Implicit Reg. in Kernel Regime: 
2. Flat Init + GD + ReLu Parametrization —> Cubic Spline 

Main Theoretical Results



A Theoretical Explanation for Implicit Reg. in Kernel Regime: 
2. Flat Init + GD + ReLu Parametrization —> Cubic Spline 

Intuitive Proof Sketch

Width = 200 units

0th order PBCs (loss):

1st order PBCs (param):

Surprise: 2nd+3rd order terms
—> a piecewise cubic spline

GD Dynamics of Individual (Discrete) Curvatures:

Vectorize:

Take Continuum Limit (Overparametrization) + Solve:

Integrate twice in x (Curvature-based Param)

(Continuity constraint for slope of approximation)

Neurons in data gap all 
see very similar gradients

Init Curvature is Flat
(essential for smoothness)



A Theoretical Explanation for Implicit Reg. in Kernel Regime: 
3. Test theory with simulations

Width = 40 units Width = 100 units



A Theoretical Explanation for Implicit Reg. in Kernel Regime: 
3. Compare Predicted Spline to Trained NN



A Theoretical Explanation for Implicit Reg. in Rich Regime: 
What Happens in the Rich Regime?

Rich Regime (alpha=1)

Rich Regime (alpha=0.1)

https://www.youtube.com/watch?v=aIQU9MdNzJQ
https://www.youtube.com/watch?v=HX1ZOUcYt6M


A Theoretical Explanation for Implicit Reg. in Rich Regime: 
What happens in the Rich Regime?

Less Smoothness, More Concentration of
Curvature amongst Breakpoints

Why? Init Weight Scale controls 
Relative Learning Rate of

Breakpoints vs. Delta-Slopes



A Theoretical Explanation for Implicit Reg. in Rich Regime: 
What happens in the Rich Regime?

Theoretical Explanation: Piecewise Quadratic Loss Surface exhibits three types
Of Critical Points, corresponding to the three types of Breakpoint attractors



A Theoretical Explanation for Implicit Reg. in Rich Regime: 
What Happens in Rich Regime?

Rich Regime (alpha=1)

Rich Regime (alpha=0.1)

https://www.youtube.com/watch?v=aIQU9MdNzJQ
https://www.youtube.com/watch?v=HX1ZOUcYt6M


Implications for Theoretical and 
Computational Neuroscience 

& Future Directions



The Spline PoV strongly encourages us to re-
examine Neuronal Networks

• Inference: The role of individual neurons in representing/approximating a function: 

• Each neuron is a basis function; Each neuronal cell type is a type of basis function 

• ==> A population of neurons forms an over complete basis: distributed code with mixed selectivity is “normal” and efficient; 
IR determines how distributed/concentrated the code is 

• Saturating Neuronal response functions and neuronal cell types  will have a dramatic impact on the representation and IR 
due to basis functions being saturated (vs. non-saturating e.g. ReLu) 

• Learning: Implicit Regularization should occur for any gradual learning algorithm (described by a corresponding PDE for the 
neuron population spline dynamics) 

• NN initialization is critical; strong pressure for Evolution to select for specific implicit biases (stored in genome & 
established during development/lifetime via cell types, plasticity rules, etc.) 

• Neuronal cell types could be a very efficient way to genetically store this implicit bias; precludes the need to train from 
scratch in each lifetime; E/I balance should have a dramatic impact on representation/IR 

• Neuron-Neuron response correlations are a Feature not a Bug: they do not need to be “decorrelated”, instead they could 
signal IR



Summary & Future Work
• Function space is very useful for: 

• Understanding Overparametrization, Loss Surface, Implicit 
Regularization 

• Visualization and Probing 

• Developing New Inits & Learning Algorithms 

• Future Work:

• Develop theory for Deeper FFNNs, RNNs, GANs, etc. 

• Scale theory to high dimensions 

• Fast (approximate) Viz tools 

• Apply theory and tools to understanding Inductive Bias of neurally 
consistent models (Conductance-weighted averaging, Dale’s Law) Thanks!

Web: ankitlab.co/ 
Twitter: @abp4_ankit

(We’re hiring!)

http://ankitlab.co/


Future Work:
Developing Probing & Visualization Tools 

Extending to Deep & Multivariate NNs 
Arbitrary Activation Functions 

Neuronal Consistent Nets with Cell Types and Saturating Responses



Ongoing Work: 
Generalizing ReLU NN to Multivariate Inputs

2-Dimensional Inputs with 
Data Gap

Multivariate Spline 
Parametrization of a 

ReLU NN



Ongoing Work: 
Generalizing to Multivariate Inputs w/ Arbitrary Activation Functions

Representation of NN: Approximating a Function via
A Continuous Basis Expansion

Neuron 
Response/Activation 

Function

Neuron
Coefficient

Neuron 
Measure

Neuron 
Basis

Function{
Implication: The (well-developed) tools & mathematics of function space 

and basis expansions can be brought to bear on NN problems.



Ongoing Work: 
Generalizing to Multivariate Inputs

Representation of NN: Approximating a Function via
A Continuous Basis Expansion

Neuron 
Response 
Function

Neuron
Coefficient

Neuron 
Measure

Neuron 
Basis

Function{

A NN representation
aan be written as a 

(dual) Radon Transform
(related to Fourier Transform)



Ongoing Work: 
Generalizing to Multivariate Inputs

Representation of NN: 
The role of each neuron is to represent coefficient x basis function



Ongoing Work: 
Generalizing to Multivariate Inputs

Neuron Response Functions Control the Basis:
ReLu



Ongoing Work: 
Generalizing to Multivariate Inputs

Neuron Response Functions Control the Basis:
Step



Ongoing Work: 
Generalizing to Multivariate Inputs

Neuron Response Functions Control the Basis:
Saturating ReLu



Ongoing Work: 
Generalizing to Multivariate Inputs

Neuron Response Functions Control the Basis:
PowerReLU



Future Work:
Developing Probing & Visualization Tools 

To better understand and improve DL



Breakpoint Dynamics during Training: 
Random vs. Adversarial (Targeted) Directions

Random Direction BPs Adversarial Direction BPs



Shallow Discriminator(1,8,1)

Deep Discriminator(1,16,16,1)

Learning Dynamics in GANs: Deeper Discriminators mitigate Mode Collapse

Training 
Loss for
Gen. & 
Discr.

Breakpoints,
Basis Fcns

for Shallow Generator

Gen. & Discr.
Mapping

Discr. Prob[Real]

Gen. Distribution

Data Distrib.



Learning Dynamics in GANs: Implicit Regularization makes it difficult for SimGD algorithm
to approximate Discontinuities —> Mode Collapse



Learning Dynamics in GANs: Switching to a minimax-guaranteed 
algorithm (Follow-the-Ridge) helps improve mode coverage but still not good enough…



Learning Dynamics in GANs: Adding a Preconditioner not only helps SimGD optimization/training speed
But more importantly it induced implicit regularization to be more adaptive…



Learning Dynamics in GANs: Combining MiniMax + Preconditioning together —> Adaptive Regularization 
—> Discontinuities approximated more sharply and quickly —> greatly improved mode coverage very early on.



Thanks!
• DL is a powerful tool for approximating functions which are too complex to 

specify directly but can instead by specified by many input-output 
examples… 

• … BUT it is not a magical blackbox — sometimes it fails badly. We must 
develop a theory that specifies the underlying modeling assumptions. We 
are also studying the brain to see how to alleviate many current limitations. 

• We can and must combine principled domain knowledge with the 
flexibility of DL, in order to achieve generalization/extrapolation, low 
sample complexity, few and interpretable parameters. 

•



Thanks!
• Future Directions:

• Univariate Deep 

• Multivariate BDSO Expansions (ongoing) 

• Other Activation Functions (sigmoid, step, saturating ReLu) 

• Neuronal Networks and Cell Types



Extra Slides



Calculating  
Gradients & Hessian  

of Loss Surface



Gradients & Critical Points of the Loss 
(for Shallow Univariate ReLu NNs)

Gradients of Function/Residuals: Gradients of Loss:



Calculating the Hessian of the Loss 
(for Shallow Univariate ReLu NNs)

Full Hessian (with Dirac Delta Function terms):



Simplifying the Hessian of the Loss 
(for Shallow Univariate ReLu NNs)

Assuming 
Datapoints and 
Breakpoints don’t 
Coincide…
(this excludes Dirac Delta 
Function terms):

Assuming we are 
at Critical Point…

Hessian is a Gram Matrix —> PSD iff 
generating vectors are Linearly Independent



Hessian of the Loss and Degenerate Directions 
(for Shallow Univariate ReLu NNs)

Simplified Hessian
is a Gram Matrix—> Pos.Semi-Def.…

Critical Points fall into a 6 types:
Local minima (1), Degenerate (5)

…whose generating vectors are…

Hessian is PSD and will be PD iff
these vectors are Linearly Independent

—> Hessian will have 0 eigenvalues
iff vectors are Linearly Dependent



Implicit Reg. for 
Neuronal Networks 

with Saturating Response Functions



Generalizing to  
Other Activation Functions



For General Non-Decreasing Activation Functions
Step



For General Non-Decreasing Activation Functions



For General Non-Decreasing Activation Functions



For General Non-Decreasing Activation Functions



For General Non-Decreasing Activation Functions
ReLU



For General Non-Decreasing Activation Functions



For General Non-Decreasing Activation Functions



For General Non-Decreasing Activation Functions
ReLU^2



Implicit Fourier Regularization 
is responsible for High-Frequency 
Low-Amplitude Adversarial Attacks


