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Outline

* Problem: Many perplexing phenomena in NNs lack clear theoretical
explanations:

* [ry to understand phenomena with artificial NNs

* This leads to a new theory for understanding the representation/
learning of NNs

* Then circle back to neuronal networks with Implications/Applications
to Theoretical & Computational Neuroscience




ISsues In the Learning I neory
of Deep Neural Networks



Unexplained Phenomena

* Problem: Many perplexing phenomena lack theoretical explanations:

* QverParametrization: The need for Overparametrization for training not
expressivity

* [nits: Lottery Ticket Hypothesis

* [ 0ss Surface: Highly non-convex and yet so many local minima near global
minima

* Generalization: Implicit Regularization despite highly underdetermined
optimization problem

* Potential Solution: Pass to function space parametrization (spline)



Related Work

Du et al, Arora et al (2018-): Circumvent dynamics of weights and instead track dynamics of
predictions (i.e. the approx. function)

Neyshabur, Serebro et al (2015-).: Implicit regularization in highly underdetermined optimization
problems in ML due to parametrization and/or optimization algorithm. Focus on low weight norm
solutions... recent ICLR 2020 paper characterizing class of low-weight norm Rel.u NNs

Baraniuk et al (2018-19): the Spline Perspective and the Geometry of deep nets

Neural Tangent Kernel: Jacot et al NeurlPS 2018, NTK valid in massively overparametrized regime,
reduces to linear dynamics

Double Descent Curve: Belkin et al 2019 show when traditional U-shaped generalization curve is
replaced by a new doubled curve

Williams et al (2019): Similar results re Implicit Reg in Shallow Univariate RelLu NNs; but different
abstruse parametrization and no results re the initialization and Hessian of loss surface.




To Function Space:
Reparametrizing Neural Nets
as Splines



Motivating Function Space

Neural Net many: Spline
—————————————————————
Params Params
(Weights & Biases) (Breakpoints, Curvatures
Ce—————— & Orientations )
many:
. ‘unfunctional” dof  Mod out “gauge” group or fix gauge dof

e Symmetry Group(“gauge”) is large  Every dof matters for the function / loss



What is the role of individual neurons??
A simple neural net example

We’ll focus on Univariate Shallow/Deep ReLu NNs:

Shallow Univariate ReLu NN




What is the role of individual neurons?
A simple neural net example

We’ll focus on Univariate Shallow/Deep ReLu NNs:

Shallow Univariate ReLu NN

LT [e < 8], si= -1




Rel.u Neural Nets as
Continuous PieceWise Linear (CPWL) Functions

Reparametrization from NN to BDSO:

o Breakpoint

1 P Orientation

Shallow Univariate ReLu NN
go.u(z) ~ f(x)

Delta-Slope
(“Curvature™)




Recasting the Simple RelLu Neural Net as a
Continuous Piece-Wise Linear (CPWL) Function

We’ll focus on Univariate Shallow/Deep ReLu NNs: 2I%eLu Net (1,20,1) trained for 15000 Iters w/ Learning Rate=5e-05 w/ Initialization = Default

0 4 >
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go.u(z) ~ f(x)
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Ongoing Work:
Generalizing ReLU NN to Multivariate Inputs

Multivariate Spline : : :
Parametrization of a 2-Dimensional Inputs with

ReLU NN Data Gap

n; = delta-slope v;||w;l[2
W

&; = unit vector normal to the break-plane T
Will2

—b;

lwill2

v; = offset from origin




Ongoing Work:
Generalizing to Multivariate Inputs & Arbitrary Activation Functions

Representation of NN: Approximating a Function via
A Continuous Basis Expansion

Neuron Neuron Neuron
Coefficient Response/Activation =~ Measure

Theorem 1. Taking the limit H — oo% haV Functicin/
o Os050) = | (€, %) —7) AG (7, 1), Neuror
$P-1xRxR __  Basis

e Function
where the random measure G Is a Gaussian Process.

Implication: The (well-developed) tools & mathematics of function space
and basis expansions can be brought to bear on NN problems.




Random Initializations



delta-slope

Joint + Conditional Density
b/w Breakpoints and Delta-Slopes

. 2 2 R2
B 1 |Mz|\/‘7b + 03,5;
pﬁaﬂ(ﬁivﬂi) — > s—5 XD
In the case of an independent Gaussian initialization,
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Marginal Density of Delta-Slopes

delta-slope density, sigma_w=1.0, sigma v=10.0

In the case of an independent Gaussian initialization,

0.20 A
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0.10 - p,LL(M’L) — 27.‘.0. o G07
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lv(v.hfire G0 (¢]-) is the Meijer G-function and K, (-) is the modified Bessel function of the second
ind.
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Empirical Observations

delta-slope density, sigma_w=1.0, sigma_v=1.0 delta-slope density, sigma w=10.0, sigma_v=1.0
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Marginal Density of Breakpoints

Breakpoint density, sigma_w=1.0, sigma_b=1.0 Breakpoint density, sigma_w=10.0, sigma_b=1.0

0.30 - 3.0 -
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Breaking Bad: Mismatch b/w Breakpoints and Function
Curvature leads to poor optimization with GD...

Relu Ne2t0(1,50,1) trained for 10000 Iters w/ Learning Rate=2e-05 w/ Initialization = Uniform_er

e« Ground Truth

s ® Breakpoint Locations (Layqr 1) ter = 0




.U Net (1 ,%00,1) trained for 10000 Iters w/ Learning Rate=0.0005 w/ Initialization = BreakPointUniformDistributi

1.5

1.0

.. but this can be Rescued by a Better Data-
dependent Initialization of the Breakpoints

',

@ £

Q

a . e
|||v||| H 1l |||” 111l 111 "" H u i

-2

8

0
Input

N

iters= Q
L

2

Data-Dependent Init:
Exploit Reparam. to Shape
Breakpoint Density

M=

f(CC;HNN) = vi(w;x + b;)
i=1
= i#z(x — Bi) {[[x > Bl si=1

P [[:C < Bz]], s; = —1

o . |
where (5, = —%

Init Sine Quadratic

Standard 4.096 + 2.25 1032 + 0404
Uniform 2.280 £+ .457 | .1118 + .0248

Table 1: Test loss for standard vs uniform brzeak-

point initialization, on sine and quadratic



| 0SS Surface



Degeneracies in Loss Surface

Theorem 3. 0% ,., is a critical point of U(Oppso) if for all pieces p € [P] we have that

A

f(-:0BDso)|x, is an Ordinary Least Squares fit of the data in piece p, and we refer to the criti-

cal point as a (C)PWL-OLS solution. Furthermore every critical point 0% ¢ Of {(0Bpso) corre-
sponds to an equivalence class of critical points O3 n € |GO5 pso] of L(OnN) where G is the set of
transformations on the NN parameters that leaves the function (BDSO parameters) invariant.



Overparametrization ==> Lonely Partitions
==> (Global Minima

Theorem 4. Consider the partition 115 g as defined above. A partition is lonely if each datapoint
n is alone in its own piece p. (a) The PWL OLS solution for a lonely partition is (i) CPWL, (ii) a

local minima and (iii) a global minima of L. (b) Furthermore, if we assume that H breakpoints are
uniformly spaced and that N data points are uniformly distributed within the region of breakpoints,
then in the overparametrized regime H > oN? for some constant o > 1, the induced partition

lIN g is lonely with high probabilility 1 — e~N/(HH1) — 1 _ g1/ Furthermore, the total

number of lonely partitions, and thus (a lower bound on) the total number of global minima of { is
(H+1) pu O(NO{N) Crowded Partitions

NRERE |

Lonely Partitions

Induced Partition of Inputs

o S R

Overpaimetrization X

Lonely @010 10T OO0 @O

X Figure 1. Breakpoints (blue bars) vs datapoints (red points). A
lonely partition 1s when a datapoint is isolated - overparameteriza-
tion makes this increasingly likely



Overparametrization ==> Lonely Partitions
==> (Global Minima

Theorem 4. Consider the partition Il i as defined above. A partition is lonely if each datapoint
n is alone in its own piece p. (a) The PWL OLS solution for a lonely partition is (i) CPWL, (ii) a
local minima and (iii) a global minima of . (b) Furthermore, if we assume that H breakpoints are
uniformly spaced and that N data points are uniformly distributed within the region of breakpoints,
then in the overparametrized regime H > oN? for some constant o > 1, the induced partition

IIn g is lonely with high probabilility 1 — e~N7/(H+1) — 1 _ g~l/e Furthermore, the total
number of lonely partitions, and thus (a lower bound on) the total number of global minima of { is

("31) = o)

1.0

0.6

0.2

Fraction of Datapoints in Lonely Partitions

— He Init
—  Uniform Init

4 6 8 10 12 14
Overparameterization Ratio: H/N

Figure 11. Percentage of datapoints which are in a lonely partition as a function of overparameterization ratio % for both a standard (H
and uniform init. Massive overparameterization leads w.h.p. to lonely partitions.



Hessian of the Loss and Degenerate Directions

[f Two Neurons have the same Activation Pattern, Then there will be a Zero Eigenvalue

(

Simplified Hessian

... Is a Gram Matrix—> Pos.Semi-Def....

<’0in',’0ij> (wixi + bili,’Uij> <’Ui1i,’Uij> -------------- <1,’0ij>
<’UZX2,’U)JXJ +b313> <’U)2Xz +bzlz,w]x] +b313> (vzluw]x] + b]]']) """"" <1’w.7x.7 +b.71.7>
(vixi,v;1;) (wix; +bi1;,v;15)

<vz]—zav_71]> .............. <1,'U]1]>

)

Critical Points fall into a 6 types:
Local minima (1), Degenerate (5)

Thus, except possibly at a set of measure zero (the 3; = x,, event), Hy is the (positive semi-definite) Gram matrix of the set

(vil;, viX;) {vixi, wix; + bil;,v; 1}, U {1}

(v;1;, wix; + b;1;)
(vil;,v;1;)

(wix; + bj1;, v;X;)
(wix; + b;1;, w;x; + b;1;)
(wix; +b;i1;,v;1;)

<’Uz'Xz', Uin‘>
(viXi, wix; + bi1;)
(vixi, vi1;)

Remember these neurons...

Then, Hy > 0 iff the vectors of this set are linearly independent. This is the case unless

1. any neurons share activation patterns

\ (1, v;%;) (1, wix; + b;1;) (1,01;) o vneee ..'.':-.,.........<1;1> }

- the loss function doesn’t care about what the function does between data points, so any change in one neuron that is
“cancelled out” by other neuron(s) between it and the data leaves the loss unchanged

R Whose generating veCtors are. . 2. any neuron is active on the entire data

- its bias is redundant with the global bias, leading to a 1-dimensional subspace of constant loss
H 3. any neuron is active on no data (i.e. x; = 1; = 0)
{vixi, wiX; + b;1;,v;1; 1,21 U {1} .
- The breakpoint will be facing away from the data, so any change of its parameters that doesn’t move the breakpoint into
the data will have no effect on the loss (v; can change arbitrarily, w; and b; will have half-spaces of constant loss)

4. if for any 7, x; < 1;

Properties of Loss Hessian:

’ P SD - you can “rotate” the line segment through its value at z,,

- PD iff gen. vectors are Linearly Independent s s o . v.b) a0

. Has 0 eigen Va Iues i f f Vec tors are Linear Iy - if v; = 0, the delta-slope is 0, so the location of the breakpoint, and thus the values of w; and b; do not matter
Dependent (flat in that direction, valley)

- ie wix; +b;1; = ox; ox vixX; X vl

- e.g. if 7 has only one active data point or has multiple data points all with the same z-value

- if w; = 0, the breakpoint is at infinity, so the values of v; and b; do not matter

- if b; = 0, changing w; will not move the breakpoint, so w; and v; can change so long as w;v; remains constant



Gradient Descent:
Suboptimality,
Breakpoint + Delta-Slope Dynamics,
& the Role of Depth



How Suboptimal is Gradient Descent”?
Comparisons to Globally Optimal PWL Regression Algos

Fitting Quadratic function with different algorithms

10 —&— DP algorithm
—&— Gradient Descent
1 »— Gradient Descent with ADAM
10 —&— Greedy Algorithm
SGD with Batchnorm Algorithm
107 ——0—
N
(7))
S
-1 10
o i
£ '
& 5
= 10
10~
10"
10 10 10° 10° 10

Number of Pieces



Can we improve GD by including global moves?
Relocating “Bad” Breakpoints During Training Rescues GD

Relég Net (1,100,1) trained for 50000 Iters w/ Learning Rate=3e-05 w/ Initialization = Uniform_ei ReLlﬁ Net (1,100,1) trained for 50000 Iters w/ Learning Rate=3e-05 w/ Initialization = Uniform

10
15 iter=0
1.0 P 10°
<
0.5 }
- 0
> 2
o & 10
= 0.0 Q
S —
-0.5
g
10
-1.0
-1.5
Loss of function
100 - Epoch of reallocation
-2.0
-4 4 0 10000 20000 30000 40000 50000

Epoch




Dynamical Laws for Breakpoints, Curvatures, Fcn

2.4 GRADIENT DESCENT DYNAMICS IN THE FUNCTION SPACE

Theorem 5. For a one hidden layer univariate ReLU network trained with gradient descent with
respect to the neural network parameters Oy = {(w;, b;,v;) Y2, the gradient flow dynamics of
the function space parameters Ogpso = {(5;, 1i) }i~, are governed by the following laws:

dﬂz 35(91\]1\/) Uz(t)

dr 0; — w; (1) (e(t) ©a;(t),1) +8:(t) (e(t) ©a;(t),x)) (4)
d L4 (t) OV ( HNN ) B net relevant residual correlation

—(v; (t) +wi (1) (e(t) © ai(t),x) — wi(t)bi(t) (€(t) © a;(t), 1) (5)



Dynamical Laws for the Function (Neural Outputs):
Relation to the Neural Tangent Kernel (NTK)

2.4 GRADIENT DESCENT DYNAMICS IN THE FUNCTION SPACE

Theorem S. For a one hidden layer univariate ReLU network trained with gradient descent with
respect to the neural network parameters O = {(w;, b;, v;) fi 1, the gradient flow dynamics of
the function space parameters Ogpso = { (0, 14:) } ;= are governed by the following laws:

dﬁz 85(91\{]\[) Uz(t)

& 05, w) eWoait) 1) +5() (€(t) © ai(t), x) (4)
d L4 (t) O f( QNN ) net relevant residual correlation

= — = —(vj (t) + w; (t)) (&(t) © a;(t),x) — wi(t)b;(t) (€(t) ® a;(t), 1) (5)

) & () (HL (1) + Gij(t)

j=1
mn

— Z similarity of x; and x; according to the network, weighted by the residual at x;

j=1

= Z residual at x;, weighted by similarity to x;
j=1 . Relation to Neural Tangent Kernel
= (e, Hj(t) + Gi(t))




The Value of Depth:
EXxpressivity or Learnabillity”



Depth doesn't add much Expressivity...

Table 2: Comparison of the number of pieces inc

L Sine S piece poly | Sawtooth Arctan Exponential | Quadratic
1 -0 40 £ 0 40+ 0 40+ 0 40 £ 0 40 £ 0
2 555+£29 52 £ 1414 50 £.7 4925 £33 | 51.25 £ 6.1 | 49.25 &£ 4.5
4 - 3.1 5725 £68 | 485 4+25 | 425 +£48 | 40.25+£3.9 | 40.25 £33
5 6225+ 15.1 49 + 3.5 445 + 5.1 38 & 5.1 3375t 1.1 | 3154 1.7

evenly distributed across layers, trained to fit varying target functions.

uced 1n a network of up to depth 5, with 40 units

Consistent with recent surprising findings from Hanin & Rolnick 2019:
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...then what is Depth good tor?
Defining & Visualizing Breakpoints in Deep Nets

DeepRelu,(1,6,6,6,6,6,1), 50000 lters, LR=3e-05,Init=Default, Opt=GD

The Fine Print:
Definition of Active Breakpoints
IS more subtle for Deep Nets

Definition 1. BZ@) is a breakpoint induced by neuron i in layer / if zzw ( BZ.(E)) = 0. Since the function
(€)

: : . : : : : l :
z; ' (+) is nonlinear, neuron © may induce multiple breakpoints, which we denote B,L( ,2 A breakpoint

Bi(_ ,3 is active if there exists some path m through neuron i such that for all other neurons j # 1 € T,

(6D

Eek) = 552,3, then both are referred to as degenerate breakpoints.

> 0, i.e. aj(x) = 1. If two neurons i and j in layers ¢ and ! induce the same breakpoint(s),

Letar(x) = [[,c, @i. Then, Bi(e) is active iff there exists some path 7 such that @, is discontinuous
at r = Bi(e). Thus, gg(z) is non-differentiable at x if x = B,L@) for some (/,7). If no degenerate

breakpoints exist, then the converse also holds. (If there do exist degenerate breakpoints 6§£) and

B;el), then it 1s possible that “Z(.“ = — u;e/), i.e. the changes in slope cancel out and gy (x) remains

linear and differentiable.)

HL#: 2 HL#: 3 HL#: 4 HL#: 5

HL#: 1

BPs induced = 0

BPs induced = 0

BPs induced = 0

BPs induced = 5

BPs induced = 6

2.0

1.5

1.0

0.5

0.0

Output

-1.0

-1.5

Network Output

iter=0
BPs induced = 11




What is Depth good for??
Depth helps with Breakpoint Mobility

DeepRelu,(1,6,6,6,6,6,1), 50000 lters,LR=3e-05,Init=Default,Opt=GD

: , o _ Network Output
Lu Net (1,200,1) trained for 10000 Iters w/ Learning Rate=1e-05 w/ Initialization = See BPs induced = 0 2.0
2.0 0
¢ G'round Truth E
@ Bfeakpoint Locations (Layer 1) ter = 0 T 15 iter =0
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HL#: 2 HL#: 3 HL#: 4

HL#: 1

What is Depth good for??
Depth —> Breakpoint Speed, Birth & Death

DeepRelLu,(1,15,15,15,15,1), 25000 lters,LR=5e-05,Init=Default, Opt=GD

Network Output
BPs induced = 5 2.0
4
— e g 15 iter =0 .3
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O
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. (<] [al]
g ' 4] <
o ° o 3 o ! 80
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. H s o 60
w o

N
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BP Births + Deaths
~
O
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What is Depth good for?

Breakpoints in Deeper Nets are more Attracted to Curvature

0.4

For Shallow ReLu Net (1 layer): >

Corr(Final BPs, Target Fcn Curvature) =0.32 £

g 0.2+

0.1

0.0 A

0.4

0.3

Deep ReLu Net (4 layers):
Corr(Final BPs, Target Fcn Curvature) = 0.49

0.1 -

0.0

Depth = 4, Data Range = +\- 2

= BP Distribution
Init Distribution
= Fn Curvature

Depth = 4, Data Range = +\- 2

8 0.2

= BP Distribution
Init Distribution
- Fn Curvature

Depth/Type
| - Imual
| - Final
4 - Inminal
4 - Final

Sine
0.0770
(0.324
-0.171
().494

Sin(%-)
0.754
0.592
).752
0.212

Cubic Spline
-0.164
(.289
-0.133
().798

Deep nets have higher correlation
b/w Breakpoint and Curvature locations
than Shallow nets



Generalization:
—xplaining
implicit Regularization



Implicit Reg.: Impact of Width for Two Lines

Width = 20 units Width = 40 units Width = 200 units

Output

(1,20,1); 1000 lters; Ir=0.0001; init=default (1,40,1); 1000 lters; Ir=0.0001; init=default (1,200,1); 1000 Iters; Ir=0.0001; init=default
4 4 4 1
2 | 2 = 2 _
T =%46.53 . =109 s ="99.09
- 9 ~ . i
- 2 = 3
0 - = 0 = 0 OO0 OO @ C
1 o] @)
O — = 0%
O
L, P ' 5 PR T LYy {lf TTRRE NI | I
-4 -4 -4
-4 -2 0 2 4 -4 -2 0 -4 -2 0 2 4
Input Input Input



Output

Output

implicit Reg.: Impact of Width for Smooth Target

R2eLu Net (1,10,1) trained for 50000 lters w/ Learning Rate=3e-05 w/ Initialization = Default

iter=0

RZeLu Net (1,60,1) trained for 50000 Iters w/ Learning Rate=3e-05 w/ Initialization = Default

-~
iter=0
1
®
0
-1
-2 \
-3 / L
-4
-5
-6
-4 -2 0 2 4

Input

Output

Output

2I%eLu Net (1,20,1) trained for 50000 Iters w/ Learning Rate=3e-05 w/ Initialization = Default
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2I%eLu Net (1,80,1) trained for 50000 Iters w/ Learning Rate=3e-05 w/ Initialization = Default
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R2eLu Net (1,40,1) trained for 50000 Iters w/ Learning Rate=3e-05 w/ Initialization = Default
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implicit Reg.: Impact of Width for Sharp Target

R2eLu Net (1,20,1) trained for 50000 Iters w/ Learning Rate=3e-05 w/ Initialization = Default

RzeLu Net (1,40,1) trained for 50000 Iters w/ Learning Rate=3e-05 w/ Initialization = Default
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Shallow

Deep

Implicit Reg.: Impact of Init Smoothness
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Initial CPWL Approximation
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w— Std. Init
Spiky Init
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Initial CPWL Approximation

w— Std. Init
Spiky Init
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Final CPWL Approximation

[J
- ’ ‘\
— Std. Init
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Final CPWL Approximation

w— Std. Init

Spiky Init

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 20

1. Spiky Inits are remembered
thru training and significantly
Increase generalization error

Function Shallow Spiky Shallow Deep Spiky Deep

Sine 42.95 + 6.406 157.5 £ 60.27 31.48 £7.078 122.0 £+ 128.2
Arctan 01252 + .07650 | 2.499 £ 1.257 | 0.9795 +0.9355 | 32.57 £ 26.10
Sawtooth 156.9 £ 12.45 150.1 £61.48 148.1 £ 8.755 198.0 £ 170.9
Cubic 3.608 £+ 1.683 136.7 £ 124.1 56.77 £+ 98.91 191.6 £ 114.1
Quadratic  3.559 + 4.553 150.6 £ 49.00 1.741 £1.296 | 46.02 £ 19.42
Exp 6509 + .5928 181.1 £75.36 £ 1.339 £ 1.292 | 54.50 £ 37.77

Table 3: Comparison of testing loss (generalization ability) of various network shallow :
networks with a standard vs ’spiky’ initialization

2. Going Deeper
can improve error
but doesn’t always help
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Quantifying Implicit Regularization:
Final Smoothness vs. Init Smoothness & Width
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—— 10 —
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3
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0
50 100 150 200 0 2 4 6 8 10 12
Hidden Units Variance of Initial Weights
Smoothness
(proportional to Init. Roughness) Measured via
Roughness:

pP=D M



Dynamical Laws for Breakpoints, Curvatures, Fcn

2.4 GRADIENT DESCENT DYNAMICS IN THE FUNCTION SPACE

Theorem 5. For a one hidden layer univariate ReLU network trained with gradient descent with
respect to the neural network parameters Oy = {(w;, b;,v;) Y2, the gradient flow dynamics of
the function space parameters Ogpso = {(5;, 1i) }i~, are governed by the following laws:

dﬂz 35(91\]1\/) Uz(t)

dr 0; — w; (1) (e(t) ©a;(t),1) +8:(t) (e(t) ©a;(t),x)) (4)
d L4 (t) OV ( HNN ) B net relevant residual correlation

—(v; (t) +wi (1) (e(t) © ai(t),x) — wi(t)bi(t) (€(t) © a;(t), 1) (5)



Dynamical Laws for the Function (Neural Outputs)

2.4 GRADIENT DESCENT DYNAMICS IN THE FUNCTION SPACE

Theorem 5. For a one hidden layer univariate ReLU network trazned with gradient descent with
respect to the neural network parameters O N = {(w;, b;, vi) .~ 1, the gradient flow dynamics of
the function space parameters Ogpso = {(Bi, i) } ;- are governed by the following laws:

dﬁz 8€(<9NN) ’Uz(t)

dt — d3; — wz(t) [< (t) Qaz( ) >‘|‘6z( )< ( )@az(t) >] (4)
d L4 ( t) OV ( HNN ) net relevant resiiiual correlation

= = = —(v; (t) + wi (1) ((t) © ai(t), x) — wi(t)bi(t) (€(t) © ai(t), 1) (5)



A Theoretical Explanation for Implicit Reg.:
1. Standard Random Inits are very Flat

Smoothness Measured via Roughness:

pP=D K

Smoothness is Highly Concentrated near zero —> Delta-Slopes near zero w.h.p.

Theorem 2. Consider the initial roughness pg under a Gaussian initialization. In the He =~~~
tion, we have that the tail probability is given by

Plpo —

where E|pg| = 4. In the Glorot initialization, we have that the tail probability is given by

Plpo — Elpo] = A] <

where TE|pg =0 (%)

-G[IOO] Z )\] S 1 4 N2’

N
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128 H

Width = 200 units

(1,200,1); 1000 Iters; Ir=0.0001; init=default
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A Theoretical Explanation for Implicit Reg. in Kernel Regime:
2. Flat Init + GD + RelLu Parametrization —> Cubic Spline
Main Theoretical Results

Theorem 6. Let u* be the converged \ parameter after
gradient flow on the BDSO model Equation ('7) starting
from py = 0, with 3 held constant. And furthermore sup-
pose that the model perfectly interpolates the training data

~

5(931)50) = (. Then,

u* = arg min ||u||5 s.t. y = ®(x; B)p.
u

Corollary 4. Consider the setting of Theorem 6, with the
additional assumption that the breakpoints are uniformly
spaced, and let H — oo. Then the learned function
Foo(z; u*, B*) is the global minimizer of

. > /1 2 -
u}f/_oof (x)*dx s.t. y, = f(x,) Vn € [N],

As such, foo(x; 1*, B™) is a natural cubic smoothing spline
with N degrees of freedom (Ahlberg et al., 1967).



A Theoretical Explanation for Implicit Reg. in Kernel Regime:
2. Flat Init + GD + RelLu Parametrization —> Cubic Spline
Intuitive Proof Sketch

GD .DynamicsAof Individual (DiscretAe) Curvatures: Width = 200 units
fi(t) = — (€(t) @ a;(t),x)+0:(t) (€(t) © a; (), 1)

Vectorize:

(1,200,1); 1000 Iters; Ir=0.0001; init=default

.« — W Neurons in data gap all
Hs = TQ»S(t)l T T3>8<t)168 see very similar gradients

N

f
o

%ll_ | 5%-
-0

Take Continuum Limit (Overparametrization) + Solve:
[Ls (x7 t) = 79 S(t) + 7 s(t)CU <«— |nit Curvature is Flat ,
’ ’ § § (essential for smoothness)
ula,t = 00) = pu(,t = 0)+ Ry ,+ RS
Integrate twice in x (Curvature-based Param) . , ; : 4
f(x,t) = cos + 157 + cos(x — &)2/2! + c35(x — &)3/3!

2
2%

BEREIT 'R THA AR |

Oth order PBCs (loss):  f(z = &t = 00) = X, fo(z = &) —> a piecewise cubic spline

1st order PBCs (param): f’(az = &5, = 00) =l(Continuity constraint for slope of approximation)



A Theoretical Explanation for Implicit Reg. in Kernel Regime:
3. lest theory with simulations
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A Theoretical Explanation for Implicit Reg. in Kernel Regime:
3. Compare Predicted Spline to Trained NN

H = 1000, Optime = <class 'torch.optim.adam.Adam'™ alpha = 100

Model Fit vs Spline
3 0.03

== Cubic Spline
s NN R
® LeftBPs
2 / 0.02

0.00

—
—
_‘d.

-0.01

-2 -0.02

-3 -0.03



A Theoretical Explanation for Implicit Reg. in Rich Regime:
What Happens in the Rich Regime?

Rich Heaime (alpha=1

Rich Begime (alpha=0.1


https://www.youtube.com/watch?v=aIQU9MdNzJQ
https://www.youtube.com/watch?v=HX1ZOUcYt6M

A Theoretical Explanation for Implicit Reg. in Rich Regime:
What happens in the Rich Regime?

Why? Init Weight Scale controls
Relative Learning Rate of
Breakpoints vs. Delta-Slopes

Less Smoothness, More Concentration of
Curvature amongst Breakpoints

1.5
' —— Cubic Spline
. 180 2.4 GRADIENT DESCENT DYNAMICS IN THE FUNCTION SPACE
a —
1.0
a=3 Theorem 5. For a one hidden layer univariate ReLU network trained with gradient descent with
a=1 respect to the neural network parameters Oy = {(w;, b;, Ui)}il, the gradient flow dynamics of
05 \ T g;; the function space parameters Ogpso = {(Bi, 1i) } i, are governed by the following laws:
¢ | /—-\\
= -\ 1 dp; 86(91\11\[) V; (t) . n
© o = — = €t a;(t), 1 (1) (et a;(t),x 4
s ol GUEL UGN ECTUR) 4
OO d ; t ag 0 net relevant I'C’SlAll(l correltation A
‘ ) = SN (u2(0) 4w 0) (6(0) © ai(t). %) — wi (Db (0) (€(0) 0 2i(0). 1) (5
- \'
-1.0
-1.2 -1.1 -1.0 -0.9 -0.8 -0.7 -0.6

X Value

Figure 9. Effect of «, using same experimental protocol as T'able 2, zoomed in on a small area of a single seed.



A Theoretical Explanation for Implicit Reg. in Rich Regime:
What happens in the Rich Regime?

Theoretical Explanation: Piecewise Quadratic Loss Surface exhibits three types
Of Critical Points, corresponding to the three types of Breakpoint attractors

Y
" .
" . -
llllllll

Lpn TN mi Ln Ln mi

Type 1 Type 11 Type 111

Figure 2. Classification of Critical Points

B.6. Loss Surface in the Spline Parametrization

Theorem 3. The loss function {(Ogpso = (B, W),s) is a continuous piecewise quadratic spline. Furthermore, the 1-

dimensional slice {(3;; 3 _;, W, s) is also a continuous piecewise quadratic spline in [3; with knots at datapoints {x,, f}le.

Let p1(3;) (p2(Bi)) be the left (right) piece at knot x,,, which both have positive curvature, and let m = arg minp; (3;).
Then, with measure 1, the knots x,, fall into one of four types as shown in Figure 2: (Type I) m1, mo < T, or x,, < mq, ms,
(Type Il) my < x, < mo (Type Ill) mo < x,, < Mmy.

Proof. First, consider the following function:



A Theoretical Explanation for Implicit Reg. in Rich Regime:
What Happens in Rich Regime?

Rich Heaime (alpha=1

Rich Begime (alpha=0.1


https://www.youtube.com/watch?v=aIQU9MdNzJQ
https://www.youtube.com/watch?v=HX1ZOUcYt6M

Implications for Theoretical and

Computational Neuroscience
& Future Directions



The Spline PoV strongly encourages us to re-
examine Neuronal Networks

* Inference: The role of individual neurons in representing/approximating a function:
 Each neuron is a basis function; Each neuronal cell type is a type of basis function

e ==> A population of neurons forms an over complete basis: distributed code with mixed selectivity is “normal” and efficient;
IR determines how distributed/concentrated the code is

e Saturating Neuronal response functions and neuronal cell types will have a dramatic impact on the representation and IR
due to basis functions being saturated (vs. non-saturating e.g. Rel.u)

* Learning: Implicit Regularization should occur for any gradual learning algorithm (described by a corresponding PDE for the
neuron population spline dynamics)

NN initialization is critical; strong pressure for Evolution to select for specific implicit biases (stored in genome &
established during development/lifetime via cell types, plasticity rules, etc.)

* Neuronal cell types could be a very efticient way to genetically store this implicit bias; precludes the need to train from
scratch in each litfetime; E/l balance should have a dramatic impact on representation/IR

* Neuron-Neuron response correlations are a Feature not a Bug: they do not need to be “decorrelated”, instead they could
signal IR



Summary & Future Work

* Function space is very useful for:

* Understanding Overparametrization, Loss Surface, Implicit
Regularization

e Visualization and Probing

* Developing New Inits & Learning Algorithms

- Future Work:
* Develop theory for Deeper FFNNs, RNNs, GANS, etc. (We,re hiring!)
e Scale theory to high dimensions Web: ank/t/ab.co/
e Fast (approximate) Viz tools Twitter: @ab p4_an KIt

* Apply theory and tools to understanding Inductive Bias of neurally
consistent models (Conductance-weighted averaging, Dale’s Law) Thanks!


http://ankitlab.co/

Future Work:

Developing Probing & Visualization 100ls
Extending to Deep & Multivariate NNs
Arbitrary Activation Functions
Neuronal Consistent Nets with Cell Types and Saturating Responses



Ongoing Work:
Generalizing ReLU NN to Multivariate Inputs

Multivariate Spline : : :
Parametrization of a 2-Dimensional Inputs with

ReLU NN Data Gap

n; = delta-slope v;||w;l[2
W

&; = unit vector normal to the break-plane T
Will2

—b;

lwill2

v; = offset from origin




Ongoing Work:
Generalizing to Multivariate Inputs w/ Arbitrary Activation Functions

Representation of NN: Approximating a Function via
A Continuous Basis Expansion

Neuron Neuron Neuron
Coefficient Response/Activation =~ Measure

Theorem 1. Taking the limit H — oo% haV Functi(in/
o Os050) = | (€, %) —7) AG (7, 1), Neuror
$P-1xRxR __  Basis

e Function
where the random measure G Is a Gaussian Process.

Implication: The (well-developed) tools & mathematics of function space
and basis expansions can be brought to bear on NN problems.




Ongoing Work:

Generalizing to Multivariate Inputs

Representation of NN: Approximating a Function via
A Continuous Basis Expansion

Neuron Neuron Neuron
Coefficient Response Measure

Theorem 1. Taking the limit H — oo% haV Function /

Fro (% 050 = / 1 (&, %) — 1) dG (£,7, 1), Neuron
$P-IxRXR _  Basis
“— Function

where the random measure G Is a Gaussian Process. Letting c(&,v) =
we have

foo (X3 0050) = R* {( *+ (&, )no(E,)) () }(x),

e pl&, ),

A NN representation
aan be written as a

(dual) Radon Transform

¢ 1S convolved with c - ng along the ~ direction (reiated to Fourier Transform)

where R*{-} Is the dual radon transform.



Ongoing Work:
Generalizing to Multivariate Inputs

Representation of NN:
The role of each neuron is to represent coefficient x basis function

Theorem 2. Under certain (strong) assumptions, we have
i ﬁD—l

| Fy6](V)
(R*) " {Lg oo } (£7),

77D
“(&:7) = n0(&,7)
1

- no(&,7)

where Lgl IS the convolutional inverse of ¢, I.e. the linear operator such that Lglgb —
o0, applied in the direction of &

—1
v

FD {foc} (795): (7)




Ongoing Work:
Generalizing to Multivariate Inputs

Neuron Response Functions Control the Basis:
RelLu

Corollary 4. Suppose ¢(-) = (-)+ (RelLU activation). Then,

(8:7) = 2 25 F 9PN (0% P || (98)] ()
1

N m0(&, )

(R V2o b (£,7)



Ongoing Work:
Generalizing to Multivariate Inputs

Neuron Response Functions Control the Basis:
Step

Corollary 5. Suppose ¢(-) = ©(-) (Step function/Heaviside activation). Then,

(E.7) = no_(gi)ﬁ?l 9P i Fp [ foo| (98)] (7)
1

N 770(&7 /7)

(R*) ™ { Oefoc | (£,7)



Ongoing Work:
Generalizing to Multivariate Inputs

Neuron Response Functions Control the Basis:
Saturating ReLu

Lemma 6. Suppose ¢(-) = (-)y — (- — A)4 (fixed-width un-normalized saturating
RelU activation). Then,

_191) 1( 192)
770(‘2*’7) ! i 1 — e—tAY FD |:fc>c} (292,)- (,y)

- <R*>1{v2 Zfoc - AEk) }<m>

no(&, )




Ongoing Work:
Generalizing to Multivariate Inputs

Neuron Response Functions Control the Basis:
PowerRelLU

()}

I'(A)

Lemma 3. Suppose ¢(x) = (Power-RelLU activation, A > 0). Then,

B 19D—1

—YD 1

f
no(&,7)" __(w)‘A
- no—(z.D v)f”_l -ﬁD_lfD { iﬁ‘}o"} (195,)} ()

D A

X (EO* 1)

and ]Di’ed IS the right-sided Riemann-Liouiville Fractional Derivative of order )\, In
the direction of the basis vector ey.

(£, F 1] 08)| ()

where




Future Work:

Developing Probing & Visualization [00Is
[o better understand and improve DL



Breakpoint Dynamics during Iraining:
Random vs. Adversarial (fargeted) Directions

Random Direction BPs Adversarial Direction BPs

RelLUs changed during training RelLUs changed during training
5000




Shallow Discriminator(1,8,1)

Learning Curve
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Learning Dynamics in GANs: Deeper Discriminators mitigate Mode Collapse
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Learning Dynamics in GANs: Implicit Regularization makes it difficult for SimGD algorithm
to approximate Discontinuities —> Mode Collapse

grid5_simgd_JS_sgd_it400000_G1-128_D1-128_IrG0.001_IrD0.001_zd2_zs0.1_bs128_sd2020_ds0.1_0-6_134103
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Learning Dynamics in GANs: Switching to a minimax-guaranteed
algorithm (Follow-the-Ridge) helps improve mode coverage but still not good enough...

grid5_fr JS_sgd_it400000_G1-128 D1-128_IrG0.001_IrD0.001_dh1.0_zd2 zs0.1_bs128 sd2020 ds0.1_0-6_133407
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Learning Dynamics in GANs: Adding a Preconditioner not only helps SimGD optimization/training speed
But more importantly it induced implicit regularization to be more adaptive...
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Learning Dynamics in GANs: Combining MiniMax + Preconditioning together —> Adaptive Regularization
—> Discontinuities approximated more sharply and quickly —> greatly improved mode coverage very early on.

~

grid5_fr_JS_rmsprop_gm0.999 it400000_G1-128_D1-128_IrG0.001_IrD0.001_dh1.0_zd2_zs0.1_bs128_sd2020_ds0.1_0-6_134622
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I hanks! ‘ DARI

DL is a powerful tool for approximating functions which are too complex to
specity directly but can instead by specified by many input-output
examples...

... BUT itis not a magical blackbox — sometimes it fails badly. We must
develop a theory that specifies the underlying modeling assumptions. We
are also studying the brain to see how to alleviate many current limitations.

» We can and must combine principled domain knowledge with the
flexibility of DL, in order to achieve generalization/extrapolation, low
sample complexity, few and interpretable parameters.




- Future Directions:

o Univariate Deep
* Multivariate BDSO Expansions (ongoing)
o Other Activation Functions (sigmoid, step, saturating RelLu)

* Neuronal Networks and Cell Types
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Calculating
Gradients & Hessian
of Loss Surface



Gradients & Critical Points of the Loss

| (for Shallow Univariate RelLLu NNs
Gradients of Function/Residuals: Gradients of LossS: )
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Calculating the Hessian of the Loss

(for Shallow Univariate ReLu NNs)
Full Hessian (with Dirac Delta Function terms):

(o )

%4 %4 o %4
8’11)_7'8’11)7; a’wj (9’01' 8wj 8bz 8’wj 8b0
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A A ; i : i ; bz - 0b
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Simplifying the Hessian of the Loss

(for Shallow Univariate RelLu NNs)

Assuming
Datapoints and
Breakpoints don’t

Coincide...
(this excludes Dirac Delta

Function terms).

Assuming we are
at Critical Point...

Assume f3; # x, for all i,n (i.e. exclude a set of measure 0)

<?)ij,?)z'Xz'> A
<ijj -+ bj].j, ’UiXi> — <€, (SUX2>
<’Uj ].j, ’U,L'Xi>

\ (1, v;x;)

At a critical point, i.e. (€;,x) = (€;,1) = 0:
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1,) (1,v;1;) (1,1) )

Hessian is a Gram Matrix —> PSD iff
generating vectors are Linearly Independent
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Hessian of the Loss and Degenerate Directions

(for Shallow Univariate ReLu NNs)

Simplified Hessian
| is a Gram Matrix—> Pos.Semi-Def....

-

;

(ViXi, VX;) (wix; + bil;,v;x;) (Ui, VjXj) cereeeeeeens (1,v;x;)
(vix;, wjx; +b;1;) (wix; +b;1;,w;x; +b;1;) (v;1;,w;x; +b;j1;)------- (1, wjx; + b;1;)
(vixi,v51;) (wix; +bil;,v;15)

<v2117v]1]> .............. <17v]1]>

(vixi, ViX;) (wix; + b1, v;x;) (vil;,viX;)
(vixi, w;X; + bi1i> (wixi + b;1;, wixX; + bili> <’Uz'1i, w;X; + b; 1i>
(vixi, vi1;) (wix; + b;i1;,v;1;) (vil;,v;1;)

K <17szz> <17wzxz +bzlz> <11U21’L> """"" ' " <171>

...whose generating vectors are...

{v;xg, wix; + b;1;,v;1; 4L, U {1}

Hessian is PSD and will be PD iff

these vectors are Linearly Independent

—> Hessian will have 0 eigenvalues
Iff vectors are Linearly Dependent

)

Critical Points fall into a 6 types:
Local minima (1), Degenerate (5)

Thus, except possibly at a set of measure zero (the 3; = x,, event), Hy is the (positive semi-definite) Gram matrix of the set
{’U,‘Xz’, wiX; + bili, Uili}iH:l U {1}
Then, Hy > 0 iff the vectors of this set are linearly independent. This is the case unless

1. any neurons share activation patterns

- the loss function doesn’t care about what the function does between data points, so any change in one neuron that is
“cancelled out” by other neuron(s) between it and the data leaves the loss unchanged

2. any neuron is active on the entire data
- its bias is redundant with the global bias, leading to a 1-dimensional subspace of constant loss
3. any neuron is active on no data (i.e. x; =1; = 0)

- The breakpoint will be facing away from the data, so any change of its parameters that doesn’t move the breakpoint into
the data will have no effect on the loss (v; can change arbitrarily, w; and b; will have half-spaces of constant loss)

4. if for any 7, x; < 1;

- e wix; +b;1; = a;x; X v;X; X vl
- e.g. if 7 has only one active data point or has multiple data points all with the same z-value

- you can “rotate” the line segment through its value at x,,
5. some of (w;,v;,b;) are 0

- if v; = 0, the delta-slope is 0, so the location of the breakpoint, and thus the values of w; and b; do not matter
- if w; = 0, the breakpoint is at infinity, so the values of v; and b; do not matter

- if b; = 0, changing w; will not move the breakpoint, so w; and v; can change so long as w;v; remains constant



implicit Reg. for
Neuronal Networks
with Saturating Response Functions



Generalizing to
Other Activation Functions



For General Non-Decreasing Activation Functions
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For General Non-Decreasing Activation Functions
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For General Non-Decreasing Activation Functions
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For General Non-Decreasing Activation Functions
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For General Non-Decreasing Activation Functions
RelLU A=2.0
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For General Non-Decreasing Activation Functions
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For General Non-Decreasing Activation Functions
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For General Non-Decreasing Activation Functions
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Implicit Fourier Regularization
'S responsible for High-Frequency
| ow-Amplitude Adversarial Attacks



