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Understand & Visualizing Convnets
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Feature Visualization
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[Zeiler and Fergus]



Feature Visualization

[Zeiler and Fergus]



Feature Visualizaticm

[Zeiler and Fergus]



Feature Visualization

THLLPARL

[Zeiler and Fergus]



Feature Visualization

[Zeiler and Fergus]




Activity Maximization (aka
Saliency Maps)

arg max S¢(I) — |12, S.(I) ~ w' I+ b,

dumbbell cup dalmatian

[Simonyan et al.]



Deep Dream Visualization




Deep Dream Visualization

e Jo produce human viewable images, need to
* Activity maximization (gradient ascent)
e [ 2 regularization
* (Gaussian blur
* Clipping
 Multiple scales (octaves)

» Code: https://github.com/google/deepdream/blob/
master/dream.ipynb



https://github.com/google/deepdream/blob/master/dream.ipynb
https://github.com/google/deepdream/blob/master/dream.ipynb
https://github.com/google/deepdream/blob/master/dream.ipynb

Example Image

[Inceptionism Gallery]



https://photos.google.com/share/AF1QipPX0SCl7OzWilt9LnuQliattX4OUCj_8EP65_cTVnBmS1jnYgsGQAieQUc1VQWdgQ?key=aVBxWjhwSzg2RjJWLWRuVFBBZEN1d205bUdEMnhB

Dumbbell Deep Dream

AlexNet VGGNet GoogleNet



Deep Dream Video

Class: goldfish, Carassius auratus



INnfinite Zoom-In
on Deep Dream

https://www.youtube.com/watch?v=SCE-QeDfXtA



https://www.youtube.com/watch?v=SCE-QeDfXtA

Texture Synthesis
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[Leon Gatys, Alexander Ecker, Matthias Bethge]



Generated Textures
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[Leon Gatys, Alexander Ecker, Matthias Bethge]



DeepStyle Examples

[Leon Gatys, Alexander Ecker, Matthias Bethge]



DeepStyle: Combining Style +
Content from Distinct Images

o 1
oCconten.t(ptxﬁl) = 5 Z (le] - I)i[j)2 :

1,7

The derivative of this loss with respect to the activations in layer [ equals

aﬁcontent o (Fl - P!)ij lf F‘:J > 0
OF; |0 if F., < 0.

and the total loss is

[Leon Gatys, Alexander Ecker, Matthias Bethge]



Introduction to
Recurrent Neural Networks



What Are Recurrent Neural
Networks”?

 Recurrent Neural Networks (RNNs) are networks
that have feedback

* QOutput is feed back to the input
e Seguence processing

e |deal for time-series data or sequential data



History of RNNs



Important RNN Architectures

Hopfield Network

Jordan and Elman Networks

Echo State Networks

Long Short Term Memory (LSTM)

Bi-Directional RNN

Gated Recurrent Unit (GRU)

Neural Turing Machine




ield Network

>
>
{+1 if Ej Wi;84 > 0.,',
8; )
—~1 otherwise.

> where:

» w;; is the strength of the connection weight from unit j to unit i (the weight of the connection).

* 8; is the state of unit j.
- e B; is the threshold of unit i.

[Wikipedia]



Elman Networks

Output Layer
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[John McCullock]



Fcho State Networks

N internal units
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[Herbert Jaeger]



Definition of RNNs



RNN Formulation

LLyeoeylt—1y Lty Ltf1y-- LT

ISl ) (W(hh)ht—l i WUW)?U[t])

Uy softmax (W(S) ht)

[Richard Socher]



RNN Diagram

Unrolled into FF NN

iy

Yt-1 Yt Yt
A 1 1
Smm—
: ) ht—l : Wht . Wht+1 ‘
> o —> Ut S 5| @ O
O o > @ _: O
O O O O
ht Xt-1 Xt Xt+1
l0o000| (0c0e| (ooco0]

[Richard Socher]



RNN Example
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[Andrej Karpathy]



Different Inference Tasks —>
Different RNN Architectures

[Kevin Murphy]



Ditferent Structures for
Filtering/Prediction Tasks

one to one one to many many to one many to many many to many
! 1 ! i ol Pt
f ! O IR P11

[Andrej Karpathy]

Object Image Action Machine Object
Recognition Captioning Recognition Translation Tracking



Universal Expressive Power
Results

The Universal Approximation Theorem tells us that:

Any non-linear dynamical system can be approximated to any accuracy by a
recurrent neural network, with no restrictions on the compactness of the state

space, provided that the network has enough sigmoidal hidden units.

This underlies the computational power of recurrent neural networks.

[John Bullinaria]



Training RNNSs



Training an RNN

* Use back propagation through time (BPTT)
Et(ytg',_l]t) = —y¢ log y
E('!/: ’!7) = Z Et(’!/z.: ’!7{.)

t
= — Z ys log 4y
t

T T To I3 T4 [Denny Britz]



Back Propagation througn
Time
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[Denny Britz]



RNN Training Issues

* Exploding/Vanishing gradients

* Exploding/Vanishing activations



Exploding Gradients

Solution: Gradient Clipping
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[Richard Socher]

roceedings/papers/v28/pascanul3.pdf

hitp://www.imlr.or


http://www.jmlr.org/proceedings/papers/v28/pascanu13.pdf

Vanishing Gradients/
Activations
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Why Training I1s Unstable

yM = f(z¥)

Let the activation function f(x) = az + [,

Var( (l)) = a’ni_107_, (Var( (l_l)) +ﬂ21m) .

Ocost 5 9 Ocost
Var (8y(l—1)) = a“njoj;_, Var ( 55D ) .

Variance of activations/gradients grows multiplicatively

[Xu, Huang, Li]




Interesting Question

 Are there modifications to an RNN such that it can
combat these activations/gradient problems”?



RNNs with Longer
Term Memory



Votivation

* [he need to remember certain events for arbitrarily
long periods of time (Non-Markovian)

* The need to forget certain events



|_ong Short Term Memory

e 3 gates

* |nput

* Forget

e Output

[Zygmunt Z.]



| STM Formulation
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[Alex Graves, Navdeep Jaitly]



Preserving Gradients
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[Hochreiter, Schmidhuber]



Gated Recurrent Unit

e 2 Qgates

e Reset

 Combine new
input with
previous memory

 Update
 How long the

previous memory
should stay

<1 IN

=y

>0OUT

[Zygmunt Z.]



GRU Formulation

© = O(thz + .st_lﬂr-*’z)
r=o(x,U" 4+ s, W")
h = tanh(x,U" + (s4_y o 7)Wh)

ss =(1—2)oh+z0s;_4

[Danny Britz]



| STM & GRU Benetfits

« Remember tor longer temporal durations

 RNN has issues for remembering longer
durations

* Able to have feedback flow at different strengths
depending on inputs



Differences between LSTM
& GRU

 GRU has two gates, while LSTM has three gates
 GRU does not have internal memory

 GRU does not use a second nonlinearity tor
computing the output




Visual Difference of LSTM &
GRU

LSTM GRU

[Chris Olah]



| STM vs GRU Results

tanh | GRU | LSTM
, train || 3.22 | 2.79 3.08
Nottingham test || 3.13 | 3.23 | 3.20
Music Datasets train || 8.82 | 694 | 8.15
JSB Chorales test || 910 | 854 | 8.67
train || 5.64 | 5.06 5.18
MuseData test 623 | 5.99 6.23
> i train || 5.64 | 493 | 6.49
1ano-mi test || 9.03 | 8.82 | 9.03
. train || 6.29 | 2.31 1.44
Ubisoft dataset A tast 644 | 3.59 2.70
Ubisoft Datasets . train || 7.61 | 0.38 0.80
Ubisoft dataset B fast 762 | 0.88 1.26

[Chung, Gulcehre, Cho, Bengio]



Other Methods for
Stabilizing RNN Training



Why Training I1s Unstable

yM = f(z¥)

Let the activation function f(x) = az + [,

Var( (l)) = a’ni_107_, (Var( (l_l)) +ﬂ21m) .

Ocost 5 9 Ocost
Var (8y(l—1)) = a“njoj;_, Var ( 55D ) .

Variance of activations/gradients grows multiplicatively

[Xu, Huang, Li]




Stabilizing Activations &

Gradients

t
Var y(l) = Var y(l_l) and Var ocos
Oy )

no;_ =1 and n_jo7 | = 1;
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[Xu, Huang, Li]



Taylor Expansions of
Ditferent Activation Functions

$ ——scaled sigmoid
o |~~~ sigmoid
== =tanh
1 relu 5 e mmmn
b and 0 -
Ap-=----"
oL .
2 0 2
X
iemoid(z) = 1 z z° O(z")
S1Mmol1 x,_Q 1~ 1R )

T -
tanh({z) = 0+ — = + O{z*)
relu(z) =0+x forz > 0.

[Xu, Huang, Li]



ayer Normalization

e Similar to batch normalization

* Apply it to RNNs to stabilize the hidden state
dynamics

[Ba, Kiros, Hinton]



. ayer Normalization Results

Attentive reader
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[Ba, Kiros, Hinton]



Variants of RNNs



Bidirectional RNNs

* The output at time t does not depend on previous
time steps but also the future

 Two RNNSs stacked on top of each other

[Danny Britz]



Deep RNNS

e Stack them on top of each other

* The output of the previous RNN is the input to the

next one

|

GRU/LSTM
Layer 2

|

GRU/LSTM
Layer 1

|
@

(2)
> St

(1)
> S

[Danny Britz]



The Power of RNNs:
Understanding and
Visualizing



The Effectiveness of an RNN

static void stat PC SEC _ read mostly offsetof(struct seq argsqueue, \
pC>[11);

static void
os_prefix(unsigned long sys)

{

PUT_PARAM RAID(2, sel) = get_state_state();
set pid sum((unsigned long)state, current state str(),
(unsigned long)-1->1r full; low;

[Andrej Karpathy]



The Effectiveness of an RNN

Naturalism and decision for the majority of Arab countries' capitalide was grounded
by the Irish language by [[John Clair]], [[An Imperial Japanese Revolt]], associated
with Guangzham's sovereignty. His generals were the powerful ruler of the Portugal
in the [[Protestant Immineners]], which could be said to be directly in Cantonese
Communication, which followed a ceremony and set inspired prison, training. The
emperor travelled back to [[Antioch, Perth, October 25|21]] to note, the Kingdom

of Costa Rica, unsuccessful fashioned the [[Thrales]], [[Cynth's Dajoard]], known

in western [[Scotland]], near Italy to the conquest of India with the conflict.
Copyright was the succession of independence in the slop of Syrian influence that
was a famous German movement based on a more popular servicious, non-doctrinal

and sexual power post. Many governments recognize the military housing of the
[[Civil Liberalization and Infantry Resolution 265 National Party in Hungary]],

that is sympathetic to be to the [[Punjab Resolution]]
(PJS)[http://www.humah.yahoo.com/guardian.

cfm/7754800786d17551963s89.htm Official economics Adjoint for the Nazism, Montgomery
was swear to advance to the resources for those Socialism's rule,

was starting to signing a major tripad of aid exile.]]

[Andrej Karpathy]



Proof. Omitted. O

Lemma 0.1. Let C be a set of the construction.
Let C be a gerber covering, Let F be a quasi-coherent sheaves of Q-modules, We
have to show that
On ¢ = Ox(L)

Proof. This is an algebraic space with the composition of sheaves F on Xz, we

ll.'l'l'l'
Ox(F) = {morphy xo. (G, F)}
where G defines an isomorphism F < F of O-modules. 0

Lemma 0.2. This is an infeger Z is injective.
Proof. See Spaces, Lemma 77. a
Lemma 0.3. Let S be a scheme. Let X be a scheme and X is an affine open

covering. LetUd C X be a canonical and locally of finute type. Let X be a scheme.
Let X be a scheme which is equal to the formal compler.

The following to the construction of the lermma follows,
Let X be a scheme. Let X be a scheme covering. Let

b: X=2Y 5Y3Y Y xxY =X,
be a morphism of algebrawe spaces over S and Y.

Proof, Let X be a nonzero scheme of X, Let X be an algebraic space, Let F be a
quasi-coherent sheal of Oy -modules, The following are equivalent

(1) F is an algebraic space over S.

(2) If X is an affine open covering.

Consider a common structure on X and X the functor Ox (L7) which is locally of
finite type. a

The Eftectiveness of an RNN
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Proof. This is clear that € is a finite presestation. see Lemmas 27.
A rednoed above we conclude that U7 is an open covering of C. The functor F is a
“fekd

Ox. = Fz NOx, .y — 05 0x,(0%)

is an somorphism of covering of Oy, If F is the unique eleznent of F such that X
is an isanorpiisan

The property F is o digjoint union of Proposition 77 and we can liltered set of
presentations of o scheme Oy -algebea with F are opens of linite type over S,

I F ix o scheme thearetic iimsge points
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[Andrej Karpathy]



The Effectiveness of an RNN

Trained on War & Peace

tyntd-iafhatawiaoihrdemot lytdws

|terat|on . 1 OO plia tklrgd t o idoe ns,smtt h ne etie h,hregtrs nigtike,aocaenns lng

e ,tfti, astai f ogoh eocase rrranbyne 'nhthnee e

"Tmont thithey" fomesscerliund

Keushey. Thom here

|teratlon . 300 sheulke, anmerenith ol sivh I lalterthend Bleipile shuwy fil on aseterlome

coaniogennc Phe lism thond hon at. MeiDimorotion in ther thize."

replied Natasha, and wishing to himself the fact the

"Why do what that day,"”
fed in had oftened him.

|terat|0n ZOOO princess, Princess Mary was easier,

Pierre aking his soul came to the packs and drove up his father-in-law women.

[Andrej Karpathy]



Visualize the Neurons of an
RNN

[Andrej Karpathy]



Visualize the Neurons of an
RNN

Cell sensitive to position in line:

wlmortance of the crossing of the Berezina lies in the fact
lainly and indubitably proved the fallacy of all the plans for
enemy's retreat and the soundness of the only possible
i -the one Kutuzov and the general mass of the army
-namely, simply to follow the enemy up. The French crowd fled
tinuvually increasing speed and all its energy was directed to
its goal. It fled like a wounded animal and it was impossible
S ath. This was shown not so much by the arrangements it
ing as by what took place at the bridges. When the bridges
narmed soldiers, people from Moscow and women with children
_ the French transport, all--carried on by vis inertiae- -
pressed into boats and into the ice-covered water and did

Cell that turns on inside quotes:

[Andrej Karpathy]



Applications



RNN Applications

Speech Recognition

Natural Language Processing
Action Recognition

Machine Translation

Many more to come



Speech Recognition

 Deep Bidirectional LSTM

[Alex Graves, Navdeep Jaitly, Abdel-rahman Mohamed]



Conversational Speech
Recognition

* Achieving human
parity
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[Xiong et al.]



Natural Language
Processing

Lookup
Tabl
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he
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e
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[Soumith Chantala]



Contextual LSTM for NLP

lasks

Softmax Output layer for Sentence-level Topics

A ’ f A
Thought unit Thought unit Thought unit
/ / LSTM embedding of sentence
c» > > il Word-level LSTM Layer
LSTM_O LSTM_1 LSTM_2 LSTM_3
Sentence_0: Sentence_1: Sentence_2: Sentence_3: EOS
Word_0 EOS Word_0 =0S Word_0 E0S Word_0

[Ghost et al.]



Action Recognition

* Long-term Recurrent Convnet

Visual Input Visual Features Sequence Learning Predictions
I

[Donahue et al.]



Google’s Neural Machine
Translation System
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lmage Captioning
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[Vinyals, Toshev, Bengio, Erhan]



Image Captioning

A person riding a Two dogs play in the grass. A skateboarder does a trick A dog is jumping to catch a
motorcycle on a di road. frisbee

Two hockey players are A little girl in a pink hat is A refrigerator filled with lots of
ghting over the puck. food and drinks.

A herd of elephants walking A close up of a cat laying
on a couch.

A red motorcycle parked on the A yellow school bus parked
< = “T==in a parking lot.

EAS LIS Py
ithout errors Somewhat related to the image _

[Vinyals, Toshev, Bengio, Erhan]



Object Tracking

Spatial Temporal

_Input Sequnce _ Visual Features  consraint _ _ Constraint _ " co'ouon
r 18 B ar O r ar N
| | | T 1 [ |
: : : -.:..:_.detection : : -H_, location :
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| | | | | [ |
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| m 4 [ |
| | - | | : [ 2 |
| -11~{detection W-na location | |
| | | | | [ |
| R — | ) E—— | E—— [ W || S———

[Ning, Zhang, Huang, He, Wang]



Neural Turing Machines

Memory is an array of vectors

(2 ]r]r]n] |

( ”
Network A
writes and reads
from this memory

each step

) Gl ) (1
@ > A > A >
f ! ! f

x0 y0 x1 y1 X2 y2 X2 y2

[Chris Olah]



WaveNet
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[van den Oord et al.]



DoomBot

* Doom Competition
e Facebook won 1st place (F1)

o https://www.youtube.com/watch?
v=94EPS|QH38Y



https://www.youtube.com/watch?v=94EPSjQH38Y
https://www.youtube.com/watch?v=94EPSjQH38Y

ODE2RNN : Parameter Estimation for Systems of
Ordinary Differential Equations

A ode2rnn framework
Dynamical Model (ODEs)

. Numerical Simulation
x(t) = f(x(t);0m) m o RNN
x(t = 0) = xo P Xj+1 = Xj + Z w f(x3”, 0p) At + o At™) 3 Xj+1 = 9(X;;0rNN)
B — ’ ODE-based RNN
o(t) = Observe(x(t)) - Recurrent Updat
A A Loss Function (/‘ > ) 1
0
1 . —)
, Estimated Optimization | D Z lox, — x| | €— zV—m))
: Parameters Train - gradient-based \/
F; <— |- LBFGs, « A B> 7
: M « Nelder-Mead, ... 1 +
i . k i > (@ —> (0]
! 1 . Parameter Gradients
|
’ ! . Experimental

)
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