ELEC/COMP 576:
Species of Convnets

Ankit B. Patel
Baylor College of Medicine (Neuroscience Dept.)
Rice University (ECE Dept.)

Species of Convnets

Evolutionary Biology

Land Plants

Inscctis

Mammals

Ampbibuns‘Y%
uchmds
Mollusks
Brachiopod C ru»luucan

Scaweed

i'\.

T
Brwroans
Vertebrates

Echinoderms *
* Sponges Coelenterates

Worms

Protozoans
Protophytes

Protists

A mostly complete chart of

Q Backfed Input Cell N e u ra l N EtWO r ks Deep Feed Forward (DFF)

’ Input Cell ©2016 Fjodor van Veen - asimovinstitute.org

é Noisy Input Cett Perceptron (P) Feed Forward (FF) Radial Basis Network (RBF)

‘ Hidden Cell) | _
’ Probablistic Hidden Cell . f—._ .

@ spiking Hidden Cell

@ outputcelt

Recurrent Neural Network (RNN) Long / Short Term Memory (LSTM) Gated Recurrent Unit (GRU)
- . [) () . ()

9,9 IR 9,9

Vatch mputOutput el B S XIERARXS NN
‘ tch Input Output Cell

o ‘\' ."\' 'I‘\ - ‘\' "\' ."\ = “' "‘\' "‘\

AT AT DERER

. Recurrent Cell

@ wemory ceu Auto Encoder (AE) Variational AE (VAE) Denoising AE (DAE) Sparse AE (SAE)

‘ Different Memory Cell

a Kernel

O Convolution or Pool ; s

9

\
I\
Vel

http://www.asimovinstitute.org/neural-network-zoo/

http://www.asimovinstitute.org/neural-network-zoo/

Object Recognition

Max . - " Max pooling
pocling pooling

LT IUS '.l
of 4 \
—

Innovations:
(50 Deep
e [rain on Multiple GPUs
oRel U
eDropOut
eData Augmentation
eResponse Normalization

VGG Net

Table 1: ConvNet configurations (shown in columns). The depth of the configurations increases
from the left (A) to the right (E), as more layers are added (the added layers are shown in bold). The
convolutional layer parameters are denoted as “conv{receptive field size)-{number of channels)”.
The ReLU activation function is not shown for brevity.

ConvNet Configuration
A A-LRN B C D E
11 weight 11 weight 13 weight 16 weight 16 weight 19 weight
layers layers layers layers layers layers
nput (224 x 224 RGB 1mage)

conv3-64 conv3-64 conv3-64 conv3-64 conv3-64 conv3-64
LRN conv3-64 conv3-64 conv3-64 conv3-64

maxpool
conv3-128 | conv3-128 | conv3-128 | conv3-128 | conv3-128 | conv3-128
conv3-128 | conv3-128 | conv3-128 | conv3-128

maxpool
conv3-256 | conv3-256 | conv3-256 | conv3-256 | conv3-256 | conv3-256
conv3-256 | conv3-256 | conv3-256 | conv3-256 | conv3-256 | conv3-256
convl-256 | conv3-256 | conv3-256
conv3-256

maxpool
conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512
conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512
convl-512 | conv3-512 | conv3-512
conv3-512

maxpool
conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512
conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512
convl-512 | conv3-512 | conv3-512
conv3-512

maxpool

FC-4096

FC-4096

FC-1000

soft-max

Innovations:

28 x 28 x 512

x14x512

s

pﬁﬁf%f

xTxH12

1 x 1 x4096

ﬂ convolution+ReLU

A

/1 max pooling

-

fully connected+ReLlU

| softmax

eReplace one big filters

by multiple smaller

filters

eGrowing NNs

I x1x 1000

GooglLenet

[

1x1 convolutions 33 convoltions 5x5 convolutions 33 max pooling

e Innovations:

ek or : : : eScale-Pooling
meem| ST e1x1 Conv (Dim.
Predon o Reduction)

(b) Inception module with dimensionality reduction

F(x)

Hx)=F(x)+x

" 4

weight layer

lrelu

weight layer

relu

Innovation:

identity

o\lake it easy to express

ePreconditioning

ResNet

identity
X

3L layer plain 34 ayer residual

Siamese Networks

Siamese Networks for Similarity

Discrimination/Matching
EW

A

e |

X X,

Learning Hierarchies of Invariant Features. Yann LeCun.
helper.ipam.ucla.edu/publications/gss2012/gss2012_10739.pdf

Siamese Networks for Similarity
Discrimination/Matching

Make this small Make this large
D, l')“_4
G, (x,)—G (x,) G, (x,)—G (x,)

A A A A

G o x,) G (X)) G lx) G lx,)

" |
7 X
t
; - ‘ PREPROCESSING PREPROCESSING
s 6\ :

-
Similar images (neighbors Dissimilar images
in the neighborhood graph) (non-neighbors n the
neighborhood graph)
Learning Hierarchies of Invariant Features. Yann LeCun. Bromley J, Guyon |, Lecun Y, et al. Signature Verification using a" Siamese" Time Delay Neural Network, NIPS

helper.ipam.ucla.edu/publications/gss2012/gss2012_10739.pdf Proc. 1994.

-ace Recognition

Deeprace

(d)

Figure 1. Alignment pipeline. (a) The detected face, with 6 initial fidu-
cial points. (b) The induced 2D-aligned crop. (c) 67 fiducial points on
the 2D-aligned crop with their corresponding Delaunay triangulation, we
added triangles on the contour to avoid discontinuities. (d) The reference
3D shape transformed to the 2D-aligned crop image-plane. (e) Triangle
visibility w.r.t. to the fitted 3D-2D camera; darker triangles are less visible.
(f) The 67 fiducial points induced by the 3D model that are used to direct
the piece-wise affine warpping. (g) The final frontalized crop. (h) A new
view generated by the 3D model (not used in this paper).

Deeprace

f
|
\\\\\\\\ S|\ Al
El\A S
<| \/ ! g
‘ \d a e \ / | LD
5 4 zZ \ @ |
: \ - > v ,X | = |
. .\\ v [\ 10
N8 2 /S5
) |
“ I x|, |
C1: M2: C3: L4: LS: L6: F7: F8
Colista F’OCk.’"aft mszg Frontalization: I2x11x11x3 32x3x3x32 16x9%x9x32 16x9x9x16 16x7x7x16 16x5x5x16 4096d 4030d
Detection & Localization @152X152x3 @142x142 @71x71 @63x63 @55x55 @25x25 @21X21

Figure 2. Outline of the DeepFace architecture. A front-end of a single convolution-pooling-convolution filtering on the rectified input, followed by three
locally-connected layers and two fully-connected layers. Colors illustrate feature maps produced at each layer. The net includes more than 120 million
parameters, where more than 95% come from the local and fully connected layers.

Deeprace

Method Accuracy + SE Protocol
Joint Bayesian [©] 0.9242 +0.0108 restricted
Tom-vs-Pete [/] 0.9330 +0.0128 restricted

High-dim LBP [/] 0.9517 £0.0113 restricted
TL Joint Bayesian [5] | 0.9633 +0.0108 restricted
DeepFace-single 0.9592 £0.0029 | unsupervised
DeepFace-single 0.9700 +0.0028 restricted
DeepFace-ensemble 0.9715 +£0.0027 restricted
DeepFace-ensemble 0.9735 £0.0025 | unrestricted
Human, cropped 0.9753

Table 3. Comparison with the state-of-the-art on the LFW dataset.

Method Accuracy (%) | AUC | EER
MBGS+SVM- [1] 789 +1.9 86.9 | 21.2
APEM+FUSION [~ 7] 79.1 +£1.5 86.6 | 21.4
STFRD+PMML [V] 79.5 £2.5 88.6 | 19.9
VSOF+0SS [77] 79.7 +£1.8 89.4 | 20.0
DeepFace-single 914 +1.1 963 | 8.6

Table 4. Comparison with the state-of-the-art on the Y7F dataset.

FaceNet
E ri>| DEEP ARCHITECTURE ‘CD ; >

Batch -

Triplet
Loss

GQZ-00omMe=m

Figure 2. Model structure. Our network consists of a batch in-
put layer and a deep CNN followed by L2 normalization, which
results in the face embedding. This is followed by the triplet loss
during training.

Negative
Anchor o m

LEARNING 9
Negative

= *—
Anchor e
Positive Positive
Figure 3. The Triplet Loss minimizes the distance between an an-
chor and a positive, both of which have the same identity, and
maximizes the distance between the anchor and a negative of a

different identity.

FaceNet

S50 ¢
o abeled Faces in the Wild: mﬂ
No alignment: 98.87% ﬁﬂﬂﬂﬂa

+0.15
witt alignment: 99.63% .QE

+ 0.09 |

FEAE

e~ 1 . |

the-art) PR
Figure 6. LFW errors. This shows all pairs of images that were

eYoutube Faces DB: 'Y l
AL
¥
incorrectly classified on LFW. Only eight of the 13 false rejects

95.12% + 0.39 (state-of- Hﬁ;ﬁ‘
S s
i3ts
shown here are actual errors the other five are mislabeled in LFW,

Object Tracking

Visual Examples

- * Bagans T ¥ -
sos @I TOR
1E@ @N 4

MDNet: Convnet for Object
Tracking

MDNet (Multi-Domain Network)

Shared Domain-specific
Layers Layers

input convl conv2 conv3 fc4 fc5
3@107x107 96@51x51 256@11x11 512@3x3 512 512

Figure 1. The architecture of our Multi-Domain Network (MDNet), which consists of shared layers and multiple
branches of domain-specific layers. Yellow and blue bounding boxes denote the positive and negative training
samples in each domain, respectively.

Which Obiject is the Target?

Domain-specific classifiers

(" Domain 1)

\ ﬂ Shared feature representation

(Domain 2 A

(" Domain 4)

Transfer to a new domain

Nam, Hyeonseob, and Bohyung Han. "Learning multi-domain convolutional neural networks for visual tracking." arXiv
preprint arXiv:1510.07945 (2015).

Test Time: Transferring the Shared
Features to Standard Convnet

Shared Domain-specific
Layers Layers

fcsl m...
LN

Transfer shared features

New Sequence

€ P £

input convl conv2 conv3 fc4 fc5
3@107x107 96@51x51 256@11x11 512@3x3 512 512

Nam, Hyeonseob, and Bohyung Han. "Learning multi-domain convolutional neural networks for visual tracking." arXiv
preprint arXiv:1510.07945 (2015).

Test Time: Transterring the Shared
Features to Standard Convnet

_.» f*(): positive score

H
\ fc6
\\ 2
\
N\
N\
convl conv2 ‘conv3 fcd fc5
S51x51 256@11x11 512@3x3 512 512

x* = argmax f +(x%)

Framet > 2

—=1——14"

Draw target Find the Collect training ; Update the !
candidates optimal state samples f CNN |f needed ;

Repeat for the next frame

Nam, Hyeonseob, and Bohyung Han. "Learning multi-domain convolutional neural networks for visual tracking." arXiv
preprint arXiv:1510.07945 (2015).

MDNet Video Results

Learning Multi-Domain Convolutional

Neural Networks for Visual Tracking

Hyeonseob Nam and Bohyung Han

Nam, Hyeonseob, and Bohyung Han. "Learning multi-domain convolutional neural networks for visual tracking." arXiv
preprint arXiv:1510.07945 (2015).

lmage Segmentation

lmage Segmentation

Fully Convolutional Networks

>
.'\"?.‘c'
backward/learning ..~
e
e A 0 Q
<o b) Q
6,,:::?"5% 2% ’2.66 ol
.-""2’6
L

Figure 1. Fully convolutional networks can efficiently learn to
make dense predictions for per-pixel tasks like semantic segmen-
tation.

[Jonathan Long, Evan Shelhamer, Yann LeCun]

Fully Convolutional Networks
for Semantic Segmentation

32x upsampled
image convl pooll conv2 pool2 conv3 poold conv4 pool4 convh poold conv6-7 prediction (FCN-32s)

16x upsampled

2x convT
poold PrediCOH (FCN-16s)
8x upsampled
4dx conv7 prediction (FCN-8s)
2x poold |

pool3 | | 1

Figure 3. Our DAG nets learn to combine coarse, high layer information with fine, low layer information. Pooling and prediction layers are
shown as grids that reveal relative spatial coarseness, while intermediate layers are shown as vertical lines. First row (FCN-32s): Our single-
stream net, described in Section 4.1, upsamples stride 32 predictions back to pixels in a single step. Second row (FCN-16s): Combining
predictions from both the final layer and the pool4 layer, at stride 16, lets our net predict finer details, while retaining high-level semantic
information. Third row (FCN-8s): Additional predictions from pool 3, at stride 8, provide further precision.

[Jonathan Long, Evan Shelhamer, Yann LeCun]

Fully Convolutional Networks
for Semantic Segmentation

FCN-8s SDS [17]

Ground Truth Image

FCN-32s FCN-16s FCN-8s Ground truth

Bikiii §

Figure 4. Refining fully convolutional nets by fusing information
from layers with different strides improves segmentation detail. . " y

. . . Figure 6. Fully convolutional segmentation nets produce state-

T.hc ﬁrs‘f three lmages. show the output from our 32, 16, and 8 of-the-art performance on PASCAL. The left column shows the

pixel stride nets (see Figure 3). output of our highest performing net, FCN-8s. The second shows

the segmentations produced by the previous state-of-the-art system

by Hariharan et al. [7]. Notice the fine structures recovered (first

row), ability to separate closely interacting objects (second row),

and robustness to occluders (third row). The fourth row shows a
failure case: the net sees lifejackets in a boat as people.

[Jonathan Long, Evan Shelhamer, Yann LeCun]

U-Net: Convnet for Segmentation of Neuronal
Structures in Electron Microscopic Stacks
(Won the ISBI Cell Tracking Challenge 2015)

tile N oo

input
. output
Image ||+ _. ‘ol-p -; gmentation

H

:ﬂ’l’l =» conv 3x3, RelL U
1024 512 ' :)

copy and crop

¥ max pool 2x2
4 up-conv 2x2
=» CcOnv 1x1

Fig. 1. U-net architecture (example for 32x32 pixels in the lowest resolution). Each blue
box corresponds to a multi-channel feature map. The number of channels is denoted
on top of the box. The x-y-size is provided at the lower left edge of the box. White
boxes represent copied feature maps. The arrows denote the different operations.

Stereo Matching

Left image patch

9

5

o

I.']:

v

L6:

LT:

L&:

Figure 2. The architecture of our convolutional neural network.

Stereo Convnets

Right image patch

9

9

4 32

200

200

v

4 concatenate »

200
200
400
300
300
300
300

Figure 5. The left column displays the left input image, while the right column displays the output of our stereo method. Examples are
sorted by difficulty, with easy examples appearing at the top. Some of the difficulties include reflective surfaces, occlusions, as well as
regions with many jumps in disparity, e.g. fences and shrubbery. The examples towards the bottom were selected to highlight the flaws in
our method and to demonstrate the inherent difficulties of stereo matching on real-world images.

Jure Zbontar, Yann LeCun

Speech Synthesis

WaveNet

© © 0 0 0 O 0O O ? Output

», o o W)) @ o - Output
O O O O O O O OOOOOOO?HWG,,U,W
Dilation = 4
/— ? : : £ m (2 -
O

O O O O O O
Dilation = 2
l O l l O l © Input

Figure 3: Visualization of a stack of dilated causal convolutional layers.

>

WaveNet

US English Mandarin Chinese
4.55
4.21 4.21
4.08
3.86
3.79
3.67
3.47
Concatenative Parametric WaveNet Human Speech Concatenative Parametric WaveNet Human Speech

Subjective preference scores (%) of speech samples

WaveNet

https://deepmind.com/blog/wavenet-generative-model-raw-

audio/

https://deepmind.com/blog/wavenet-generative-model-raw-audio/
https://deepmind.com/blog/wavenet-generative-model-raw-audio/

Computer Aided
Diagnosis In Medical
lmaging

Convnet for Brain Tumor
Segmentation (Top 4 in BRATS 2015

ol Pl |

Ouzpet
Sxixd

Conv 21821 +
! Setma

(o g)

- [| m 242121 .
Comv 2T+ Cowv i + Ut
Mot + Munoss E Sxixl
P—— Pockag 22 .

—t~0
|

-ﬁ_/ g

\

Fig.1: The proposed architecture by Havaei et al. [33]. First row:
TwoPATHCNN. The input patch goes through two convolutional networks each
comprising of a local and a global path. The feature maps in the local and
global paths are shown in yellow and orange respectively. Second row: INPUT-
CASCADECNN. The class probabilities generated by TwOPATHCNN are con-
catenated to the input of a second CNN model. Third row: Full image prediction
using INPUTCASCADECNN.

U-Net: Convnet for Segmentation of Neuronal
Structures in Electron Microscopic Stacks
(Won the ISBI Cell Tracking Challenge 2015)

tile N oo

input
. output
Image ||+ _. ‘ol-p -; gmentation

H

:ﬂ’l’l =» conv 3x3, RelL U
1024 512 ' :)

copy and crop

¥ max pool 2x2
4 up-conv 2x2
=» CcOnv 1x1

Fig. 1. U-net architecture (example for 32x32 pixels in the lowest resolution). Each blue
box corresponds to a multi-channel feature map. The number of channels is denoted
on top of the box. The x-y-size is provided at the lower left edge of the box. White
boxes represent copied feature maps. The arrows denote the different operations.

Genetics

DeepBind: Convnet for Predicting the

Sequence Specificities of DNA- and RNA-

Binding Proteins

a Current batch Motif scans Features Oo, %5
of inputs . 7 @e<9
fI
Convoe e ooty 9 Pool JEA Novrainetwor
Motif -
oti L _
detectors , ':%EI Thresholds Weights
Current model - 3 3
parameters © : :
Parameter é ' |
updates
b 1. Calibrate 2. Train candidates 3. Test final model
— Test
i) —{ O 02 AUC
Evaluate @ | Use best @) 0.93
random 4 09 —{(a8 calibration § 9 | Predict 0
calibrations : - (3 attempts) | g2 M b w
000~ J— W . W .y
et i Average Use all training data T'Eﬂ‘g‘g . Use parameters
3-fold cross validation validation | (Train) 0907 | of best candidate

-
data

(a) Five independent sequences being processed in parallel by a single DeepBind model. The convolve, rectify, poo! and neural network stages predict a
separate score for each sequence using the current model parameters (Supplementary Notes, sec. 1). During the training phase, the backprop and update
stages simultaneously update all motifs, thresholds and network weights of the model to improve prediction accuracy. (b) The calibration, training and testing

Test data never seen
during calibration or training

procedure used throughout (Supplementary Notes, sec. 2).

Fashion

Neuroaesthetics in Fashion: Modeling
the Perception of Fashionabillity

" Prediction

Claustrophobic Setting
User Cluster 20
Brown/Blue Jacket (2)

Recommendation
Black Casual (7)
Black Boots/Tights (4)
Black/Blue Going out (3)

Figure 1: Example of recommendations provided by our
model for the post on the left. In this case the user is wear-
ing what we have identified as “Brown/Blue Jacket”. This
photograph obtains a score of 2 out of 10 in fashionability.
Additionally the user is classified as belonging to cluster 20
and took a picture in the “Claustrophobic” setting. If the
user were to wear a “Black Casual” outfit as seen on the
right, our model predicts she would improve her fashion-
ability to 7 out of 10. This prediction is conditioned on the
user, setting and other factors allowing the recommenda-
tions to be tailored to each particular user.

[Edgar Simo-Serra, Sanja Fidler, Francesc Moreno-Noguer, Raquel Urtasun]

Neuroaesthetics in Fashion: Modeling
the Perception of Fashionabillity

Fans. o & Location

. -] 6|

Fans Location ’l(’i 16\ Scene

Personal Y/ Scene Personal —

C?Iours S | o= |« Comments
Singles =16 / 8 4-10‘ Style

AT Garments |7 " Tags

Colours |

Comments Singles Y Softmax

Style Garments Figure 5: Illustration of the type of deep network architec-

Tags ture to learn features. We can see that it consists of four

network joined together by a softmax layer. The output of

the different networks ¢, ¢,, ¢,, and ¢, are then used as
features for the CRF.

Figure 4: An overview of the CRF model and the features
used by each of the nodes.

[Edgar Simo-Serra, Sanja Fidler, Francesc Moreno-Noguer, Raquel Urtasun]

Unsupervised
_earning

Neuroaesthetics in Fashion: Modeling
the Perception of Fashionabillity

Current Outfit: g Current Outfit: Current Outfit:

Pink Outfit (3) %1 Pink/Blue Shoes/Dress Shorts (3) Pink/Black Misc. (5)
Recommendations: . Recommendations Recommendations:
Heels (8) -, Black/Gray Tights/Sweater (5) Pastel Dress (8)

Pastel Shirts/Skirts (8) Black Casual (5) Black/Blue Going out (8)

Black/Gray Tights/Sweater (5) © ‘ 7 - Black Boots/Tights (5) Black Casual (8)

Current Outfit:
Blue with Scarf (3)

Current Outfit:
.é% Pink/Blue Shoes/Dress Shorts (3)

Current Ouftfit:
Formal Blue/Brown (5)

Recommendations: .| Recommendations: w Recommendations:
Heels (8) M | Black Casual (7) y d Pastel Shirts/Skirts (9)

Pastel Shirts/Skirts (8) A Black Heavy (3) . Black/Blue Going out (8)

Black Casual (8) ! Navy and Bags (3) .*“3:5 Black Boots/Tights (8)

Figure 10: Example of recommendations provided by our model. In parenthesis we show the predicted fashionability.

[Edgar Simo-Serra, Sanja Fidler, Francesc Moreno-Noguer, Raquel Urtasun]

Unsupervised feature learning with a neural network
Autoencoder.
Network is trained to

/4 output the input (learn

< /6

9\

e\\\ l/’ 6 identify function).
° ‘v’.‘“""/e ho(x) ho(x) =~ «

“\ @ Trivial solution unless:

-C | f

Q‘\ ~ s n Layer 2 ear

compressed
representation), or

- Constrain Layer 2 to
Layer 1 be sparse.

Andrew Ng

Unsupervised feature learning with a neural network

Training a sparse autoencoder.

Given unlabeled training set x4, X,, ...

min |[hg(z) — z]* + A Z ai|

Reconstruction error L.

sparsity term
term

Andrew Ng

Variational Autoencoder

latent variable model: learn a mapping from some latent variable z
to a complicated distribution on .

p(@) = [p@.2) dz where p(@,2) = p(a | 2)p(2)
p(z) = something simple p(x | z) = f(2)

Can we learn to decouple the true explanatory factors underlying
the data distribution? E.g. separate identity and expression in face images

29 19

Variational Autoencoder

Leverage neural networks to learn a latent variable model.

p(z) = / p(z,2) dz where p(,z) = p(x | 2)p(z)

p(z) = something simple plx| z)=f(2)

L2

Inference/Learning
Challenge

® Where does zcome from? — The classic directed model dilemma.

e Computing the posterior p(z |) is intractable.

® \We need it to train the directed model.

Variational Autoencoder

(z | ¢) that
z | z) by

learns to approximates the intractable posterior po(

optimizing the variational lower bound:

The VAE approach: introduce an inference model ¢4
L6, ¢,

log pa(z | 2)]

|

e \We parameterize 95(z |) with another neural network:

)

—Dx1 (g6(2 | 7)|| po(2)) + qus(z

)

i

p(CE; f(Z, 0))

po(7 | 2)

q(z;9(x, 9))

¢ (7 | x)

4% 4»

’

\woéYAs mm ,YA:‘ % ¢
_/ ‘f lf/ %

A \\\xﬁ,ﬂx\.\i,w .

o0

N\ l/ﬂf,

&‘ 4~ \
o« ¢, \\I .
\J

‘0? >47

:4\ »/
Z,.
SO

éﬂ_,

L
4

\
s

I
ﬂ ‘

Variational Autoencoder

Objective function: [,(9, 0, CE) = —Dxi, (Q¢(Z | a:)||p9(z)) + Eq¢(z|m) [10gp9 (CE | Z)]

7

/,,
N ’% A\ 1’*\\\’// ﬂ"{l/'
Y0700 -

VV‘

94*-\ W 04
"AA‘

Forward propagation

L A A \
«v '&‘ N ‘ '
N o, ‘
/,‘9¢ ’»—J/ ’»—4, »’“M 47 3\, ». ‘ v Y
XX 7\ A“ I ' ‘\\ A\

u/ ‘\\J/’ v\\\u/ AN — w\\\
EQ

A\

M

Backward propagation

qg(2 |) po(z | 2)

Variational Autoencoder

MNIST:

Frey Face dataset:

S uoissaidxg

A
<
‘1
-
P
-
-
F o
aohe

.

-

23a

S
-

39‘.
lectofe

-
L4
-
4

-

BB s
T
,1"\

D B

AR
o W G
i B B W

SEEEE

35
:

DN NANNAANANNNNSNNNNNS
QAR LLLLLLWNYNNN~
QUAVYINNINRLLLLLVYY Y NN~
QAU iy iyt e WOVOVVW W -~~~
QAVVHLHINNKWW W BVIVIYY W W - —
QAOODHINININMHMEBPBIIVIY D W - - —
QAQOODIOHINMMNMO VDI ID D W - - —
QODOMHMNMMMMM®D DD D o —
OODOMMMN MM ONMWMD DD D e —
QOOMMOMMM MMM N0 e on om e e —
QOMMMM M " 000000 e en o —
NI L N N N Nl R U R e
it orororororrrs oo~
Sl odogorororororrraaaaoan~
SdadaddadocrrrrrrFrFTIIIINN
SAddddgorrrrrrdFFTITRIRINN
A ddTTTrrrrrrdrr222NN
I g gl il ool ol ol ol ol ol W NI NI NN

>y

S S o W S
..3;
25 BB

Z1

Pose

Deep Latent-Variable Model

m \We combining the strengths of deep neural

nets with those of latent-variable models ? p(z1)

m directed latent variables models: can |
represent complicated @ p(z2|z1)
marginal distributions over x l

m probabilistic deep neural nets: & p(x|z)
can represent complicated conditional
dependencies p(y|x) = f(x,y) p(X,21,22) =

X\|Z 227 7
m |ntractable posterior distribution p(z|x) p(x|z2)p(z2|z1)p(21)

—> Approximate inference

Deep Generative Model

Stacked semi-supervised learner
Q P

Each edge is parameterised as a deep neural net

Deep Rendering Moadel

Deep Rendering E-step:

Model v %
8, = arg Max Yeq
8,0

a e E [dn @Z~n|g;aln§9]:/~\;; @) In

M-step:
Ay = OLS (I, ~ E[d, ® Z|gn,1,; 0] ,n € (g,a))

G-step:

Ag =R V5 £orm(6)

Inference Learning

Generative Adversarial
Networks (GAN)

A D tries to D tries to A
output 1 output O

Q0O --- OO Q0O --- OO

OO - OO

OO - OO

Differentiable Differentiable
function D function D

0O --- OO0

<=

00 --- OO

2

' x sampled x sampled
- from data from model
L

Differentiable
function G

Input noise

00---00)z

4,
o £
&
o ’kf
RS
a [Gy
R -;"‘;';‘.;"' e
R s
= I S Y
% e e e
N e e T
Y ',.."-,-{-’
S\
=) 'J.v‘: X
=
ooy

Zero-sum Game Objective

* Minimax objective function:

minmax V (D, G) =
G D

P () log D(x)] +

ﬂz,vpz (2) [log(l — D(G(Z)))]

* |n practice, to estimate G we use:

max
G

U2 npa (2)l0g D(G(2))]

Why! Stronger gradient for G when D is very good.

Zero-sum Game Objective

min max V (D, G) = Egnpy @) 10§ D(@)] + Eanp, () llog(1 — D(G(2)))]

* [heoretical properties (assuming infinite data, infinite
model capacity, direct updating of generator’s
distribution):

- Unigue global optimum.
- Optimum corresponds to data distribution.

- Convergence to optimum guaranteed.

| earning Process in GAN

pp(data) Data distribution
l / Model distribution

.........

.
' "y ‘v o °
IR R oy
1’) ' ' 1 ,\
I 1 ’ & V0
v ! A)
' [
! v

A Y

K
A}

[] [} A

[] [)

[]
'
o & '
v 0 0,
v P
!
’

Y/

Tl T 7

Poorly fit model After updating D After updating G =~ Mixed strategy
equilibrium

AN

Visualization of Model
Samples

CIFAR-10 (fully connected) CIFAR-10 (convolutlonal)

Improved GAN

N 5 O P
T e I= TV,
EIF) MR W on
S 2 L S
SR R

¥.00-3 vy R R I
o A WD e S L
B o A R Y
ﬁﬁl.ﬂ::ﬁﬂ
A

Improved GAN

| adder Network

Error Rate

2l

}"I(:i))

A

Non-linearity
Batch-Norm Correction

Noise Addition

Normalization

Linear Transformation

Non-linearity
Batch-Norm Correction
Noise Addition
Normalization

Linear Transformation

(

3(1) | B]

@ Normalization

Combining Signals

® Linear Transformation

@ Normalization

Combining Signals

® Linear Transformation

@ Normalization

Combining Signals

RC

Y

A

Non-linearity

Batch-Norm Correction

I Normalization
Linear Transformation

I Non-linearity
Batch-Norm Correction
I Normalization

Linear Transformation

(0] pM®)

| adder Network

Algorithm 1 Calculation of the output y and cost function C' of the Ladder network

Require: x(n)
Corrupted encoder and classifier
h©® « 7 « x(n) + noise
for1=1toL do 3
7() < batchnorm(W®h(-1D) 4 noise
h(®) « activation(v® o (2 + 1))
end for 3
P(y | x) + h&)
Clean encoder (for denoising targets)
h(® « 2z « x(n)
forl=1toL do
z\0e « WORI-D)
p) batchmean(z&)e)
oll) batchstd(zgr)e)
z(D) batchnorm(zl()ll?e)
h®) « activation(v® ® (z) + ,B(l)))
end for

Final classification:
P(y | x) « h(®
Decoder and denoising
for=Lto0Odo
if 1 =L then 3
u®) < batchnorm(h(X))
else
ul® « batchnorm(V{+1z(+1)
end if
Vi 2« gV) #Eq. 2)

NORNO
O e
Vi:Z; BN 0

end for
Cost function C for training:
C+0
if ¢(n) then

C < —log P(y = t(n) [x(n))
end if

L (1) _ 4 °
C+C+E Nz —zBNH #Eq. (3)

Stacked What-Where
Autoencoder

Po

“where” olin

@ @@J

1

Convolution/ReLU

“where”
4 [olo|lo '

Convolution/RelL.U

T

] nar
0O

Pooling

O

 —————

Convolution/ReLU

1

Semi-supervised Results

Model Number of incorrectly predicted test examples
for a given number of labeled samples
20 50 100 200
DGN [21] 333 + 14
Virtual Adversarial [22] 212
CatGAN [14] 191 £+ 10
Skip Deep Generative Model [23] 132 &+ 7
Ladder network [24] 106 + 37
Auxiliary Deep Generative Model [23] 96 4 2
Our model 1677 4 452 221 4+ 136 93 £ 6.5 90 + 4.2
Ensemble of 10 of our models 1134 + 445 142 4 96 86 + 5.6 81 + 4.3

Table 1: Number of incorrectly classified test examples for the semi-supervised setting on permuta-
tion invariant MNIST. Results are averaged over 10 seeds.

Model Test error rate for
a given number of labeled samples
1000 2000 4000 8000
Ladder network [24] 20.4040.47
CatGAN [14] 19.5840.46
Our model 21.83+2.01 19.614+2.09 18.631+2.32 17.72+1.82

Ensemble of 10 of our models 19.224-0.54 17.254+0.66 15.5940.47 14.874+0.89

Table 2: Test error on semi-supervised CIFAR-10. Results are averaged over 10 splits of data.

