ELEC/COMP 576:
Introduction to Convnets

L ecture 4

Ankit B. Patel
Baylor College of Medicine (Neuroscience Dept.)
Rice University (ECE Dept.)

Convolutional Networks
(Convnets)

Convolutional Neural Network

C3:1. maps 16@10x10
C1: feature maps S4 f. maps 16@5x5

INPUT 6@28:28
Sy e F6:layer OuTPUT

| ‘ Ful conAect:on | Gaussan connections
Convolutions Subsampling Convoluuons Subsamplng Full connection

[LeNet-5, LeCun 1980]

History of Convolutional
Neural Network

In 1962, Hubel and Wiesel describe simple and complex cells in visual
area V1 (inspiration for later NNs: S-->template matching for pattern
specificity and C-->pooling for robustness to nuisances)

In 1979, Fukushima introduces the Neocognitron. It foreshadows current
deep NNs: convolutional layers, weight replication, and WTA-subsampling.
However its unsupervised

In 1989, LeCun applies Backprop to Fukushima’s Neocognitron to do
supervised learning. This is the first incarnation of modern convolutional
neural nets (CNNs) and subsequently used by US Post Office for address
reading.

In 1999, Riesenhuber and Poggio introduce HMAX, a computational model
that summarizes the basic facts about the ventral visual stream

In 2012, Krizhevsky introduces AlexNet which is implemented in GPUs and
win the ImageNet Challenge

Single-object localization

Year Codename Error (percent) 99.9% Conf Int
2014 VGG 25.32 24.87 - 25.78
2014 GoogLeNet 26.44 25.98 - 26.92
2013 OverFeat 29.88 29.38 - 30.35
2014 Adobef 30.10 29.61 - 30.58
Image classification 2014 SYSU 31.90 31.40 - 32.40
Year Codename Error (percent) 99.9% Conf Int 2012 SuperVisionf 33.55 33.05 - 34.04
2014 GoogLeNet 6.66 6.40 - 6.92 2014 MIL 33.74 33.24 - 34.25
2014 VGG 7.32 7.05 - 7.60 2012 SuperVision 34.19 33.67 - 34.69
2014 MSRA 8.06 7.78 - 8.34 2014 MSRA 35.48 34.97 - 35.99
2014 AHoward 8.11 7.83 - 8.39 2014 Trimps’ 42.22 41.69 - 42.75
2014 DeeperVision 9.51 9.21 - 9.82 2014 Orange 42.70 42.18 - 43.24
2013 Clarifaif 11.20 10.87 - 11.53 2013 VGG 46.42 45.90 - 46.95
2014 CASIAWST 11.36 11.03 - 11.69 2012 VGG 50.03 49.50 - 50.57
2014 Trimps? 11.46 11.13 - 11.80 2012 ISI 53.65 53.10 - 54.17
2014 Adobef 11.58 11.25 - 11.91 2014 CASIAWST 61.96 61.44 - 62.48
2013 Clarifai 11.74 11.41 - 12.08 . .
2013 NUS 12.95 12.60 - 13.30 Object detection
2013 ZF 13.51 13.14 - 13.87 Year Codename AP (percent) 99.9% Conf Int
T
2013 AHoward 13.55 13.20 - 13.91 2014 GoogLeNet 43.93 42.92 - 45.65
2013 OverFeat 14.18 13.83 - 14.54 2014 CUHKT 40.67 39.68 - 42.30
3 T
2014 Orange! 14.80 14.43 - 15.17 2014 Deeplnsight 40.45 39.49 - 42.06
2012 SuperVisiont 15.32 14.94 - 15.69 2014 NUS 37.21 36.29 - 38.80
2012 SuperVision 16.42 16.04 - 16.80 2014 UvA 35.42 34.63 - 36.92
2012 ISI 26.17 95.71 - 26.65 2014 MSRA 35.11 34.36 - 36.70
2012 VGG 26.98 26.53 - 27.43 2014 Berkeley’ 34.52 33.67 - 36.12
2012 XRCE 27.06 26.60 - 27.52 2014 UvA 32.03 31.28 - 33.49
2012 UvA 29 58 29.09 - 30.04 2014 Southeast 30.48 29.70 - 31.93
2014 HKUST 28.87 28.03 - 30.20
2013 UvA 22.58 22.00 - 23.82
2013 NECT 20.90 20.40 - 22.15
2013 NEC 19.62 19.14 - 20.85
2013 OverFeat’ 19.40 18.82 - 20.61
2013 Toronto 11.46 10.98 - 12.34
2013 SYSU 10.45 10.04 - 11.32
2013 UCLA 9.83 9.48 - 10.77

Revolution of Depth 28.2
[152 layers] i

\ 16.4

\ 11.7
22 layers 19 layers

\\ 6.7 7.3
3.57 l o I 8 layers [8 layers

ILSVRC'15 ILSVRC'14 ILSVRC'14 ILSVRC'13 ILSVRC'12 ILSVRC'11 ILSVRC'10
ResNet GoogleNet VGG AlexNet

ImageNet Classification top-5 error (%)

Convolutional Layer

32x32x3 image

32 height

32 width

3 depth

[Fei-Fei Li, Andre| Karpathy, Justin Johns

Convolutional Layer

32x32x3 image

/ 5x5x3 filter

32 £/
II Convolve the filter with the image
i.e. “slide over the image spatially,
computing dot products”

32

[Fei-Fei Li, Andre| Karpathy, Justin Johns

Convolutional Layer

Filters always extend the full

_——— depthofthe input volume

32x32x3 image /
ox5x3 filter
32 L/
II Convolve the filter with the image
i.e. “slide over the image spatially,

computing dot products”

32

[Fei-Fei Li, Andre| Karpathy, Justin Johns

Convolutional Layer

__— 32x32x3 image

ox5x3 filter w
= —
the result of taking a dot product between the

filter and a small 5x5x3 chunk of the image

32 (i.e. 5*5*3 = 75-dimensional dot product + bias)

wliz+b

~~ 1 number:

[Fei-Fei Li, Andre| Karpathy, Justin Johns

Convolutional Layer

7
I

activation map

__— 32x32x3 image

5x5x3 filter

V

/

28

32

convolve (slide) over all

spatial locations
28

1

[Fei-Fei Li, Andre| Karpathy, Justin Johns

=0\

32

Convolutional Layer

_— 32x32x3 image activation maps

32

5x5x3 filter

.

28

convolve (slide) over all
spatial locations

o

1

[Fei-Fei Li, Andre| Karpathy, Justin Johns

Convolutional Layer

For example, if we had 6 5x5 filters, we’ll get 6 separate activation maps:

yar
Z

Convolution Layer

3

activation maps

7

A

LANY
6

We stack these up to get a “new image” of size 28x28x6!

28

Common to zero-pad
the border

[Fei-Fel Li, Andre| Karpathy, Justin Johnson]

Question (3 min):
What is the special structure of the matrix that corresponds
to a Convolution operation?
Can you exploit this structure to design a more efficient
algorithm for computing the convolution?

Convolutional Network

Preview: ConvNet is a sequence of Convolutional Layers, interspersed with
activation functions

/ 32 28 24

CONV, CONV, CONV,
RelLU RelLU RelLU
e.g.6 e.g. 10
5x5x3 5x5x6
32 filters 28 filters 24
3 6 10

[Fei-Fei Li, Andre| Karpathy, Justin Johns

A Neural View of Convolutional Layer

The brain/neuron view of CONV Layer

__— 32x32x3 image

5x5x3 filter
=
1 number:

32 the result of taking a dot product between
3 the filter and this part of the image
(i.e. 5*5*3 = 75-dimensional dot product)

It's just a neuron with local
connectivity...

[Fei-Fei Li, Andre| Karpathy, Justin Johns

A Neural View of Convolutional Layer

The brain/neuron view of CONV Layer R

32 /
N 28 An activation map is a 28x28 sheet of neuron
_— outputs:

1. Each is connected to a small region in the input
2. All of them share parameters

32 AS “5x5 filter” -> “5x5 receptive field for each neuron”

[Fei-Fei Li, Andre| Karpathy, Justin Johns

A Neural View of Convolutional Layer

The brain/neuron view of CONV Layer

32

32

28 E.g. with 5 filters,
O O O Q () CONV layer consists of
neurons arranged in a 3D grid

(28x28x5)

There will be 5 different
28 neurons all looking at the same

region in the input volume

[Fei-Fei Li, Andre| Karpathy, Justin Johns

Pooling Layer

204x224x64 Single depth slice

112x112x64 1 1 2 4
pool X .
— - max pool with 2x2 filters
5| 6 |7 |8 and stride 2 6 | 8
o
- P 11234
— downsampling
112
224 g

y

[Fei-Fel Li, Andre| Karpathy, Justin Johnson]

Activation Functions

activation
functon

9

activation

X @ net input
2 net;

transfer
function

Activation Functions

Leaky RelLU

Sigmoid max(0.1x, x)

olz)=1/(1+e=) A

tanh tanh(x)

Maxout max(wlz+b;,wlz+b,)

ReLU max(0,x)

ifz >0

= 3 ° @ = ELU 25 {fl. (exp(z) —1) ifz <0

—LRwlU

[Fei-Fei Li, Andrej Karpathy, Justin Johnson]

Classification with 2-Layer Convnet:
Visualizing the Mechanism Inside

e http://cs.stanford.edu/people/karpathy/convnetjs/demo/
classity2d.html|

* Try playing around with this app to build intuition:
* change datapoints to see how decision boundaries change
e change network layer types, widths, activation functions, etc.

* try shallower vs deeper

http://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html
http://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html

Training on CIFAR10

e http://cs.stanford.edu/people/karpathy/convnet|s/
demo/cifar10.html

[Fei-Fei Li, Andre| Karpathy, Justin Johns

http://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.html
http://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.html

Training Convnets;
Problems and Solutions

First Lesson: Transfer
L earning

“‘ConvNets need a lot
of data to train”

finetuning! we rarely ever
train ConvNets from scratch.

Transtfer Learning

1. Train on ImageNet 2. Finetune network on
B N your own data

Ima g eNet data ‘ ’):ouf_

C._data, >~

_image

conv-64
conv-64

maxpool

conv-128
conv-128
maxpool

conv-256
conv-256

maxpool

conv-512
conv-512

maxpool

conv-512
conv-512

maxpool

FC-4096
FC-4096
FC-1000
softmax

Transtfer Learning

1. Train on
ImageNet

_image

conv-64
conv-64

maxpool

conv-128
conv-128
maxpool

conv-256
conv-256

maxpool

conv-512
conv-512

maxpool

conv-512
conv-512

maxpool

FC-4096
FC-4096

FC-1000
softmax

2. If small dataset: fix
all weights (treat CNN
as fixed feature
extractor), retrain only
the classifier

l.e. swap the Softmax
layer at the end

__image

conv-64
conv-64

maxpool

conv-128
conv-128
maxpool

conv-256
conv-256

maxpool

3. If you have medium sized
dataset, “finetune” instead:
use the old weights as
initialization, train the full
network or only some of the
higher layers

retrain bigger portion of the

conv-512
conv-512

maxpool

conv-512
conv-512

maxpool

FC-4096
FC-4096
FC-1000
softmax

network, or even all of it.

e

Data Preprocessing

Zero-Center & Normalize Data

original data zero-centered data normalized data

10 -10
19 -10 -5 0 5 10 10

X -= np.mean(X, axis = 0). X /= np.std(X, axis = 0)

(Assume X [NxD] is data matrix,
each example in a row)

PCA & Whitening

original data decorrelated data whitened data

30 10 10

: 10! -10
19 10 5 0 5 19 -10 -5 0 5 0

(data has diagonal (covariance matrix is the
covariance matrix) identity matrix)

In Practice, for Images:
Center Only

e.g. consider CIFAR-10 example with [32,32,3] images

- Subtract the mean image (c.g. AlexNet
(mean image = [32,32,3] array)

- Subtract per-channel mean (e.g. VGGNet)
(mean along each channel = 3 numbers)

Not common to normalize
variance, to do PCA or
whitening

Data Augmentatlon

During training:

* Random crops on the original
image

* Horizontal reflections

During testing:

* Average prediction of image
augmented by the four corner
patches and the center patch +
flipped image (10 augmentations
of the image

| Data augmentation reduces |

~overfiting

a. No augmentation

v
224x224
N
- /
)

b. Flip augmentahon 2 in

&

c. Crop+Flip augmentation

Weignt Initialization

Interesting Question:
What happens when the weights are
initialized to 07 (2 min)

Answer: The gradients in the backward pass will
become zero!

1. Perform a feedforward pass, computing the activations for layers [, I3, up to the output layer L, ,
using the equations defining the forward propagation steps

2. For the output layer (layer n;), set

57 = —(y — a™) o ()

3. Forl=nl— 1,n1—2,n,—3,...,2,set

_5(1) — ((W(z))75(1+1)) °f'(z(1))

4. Compute the desired partial derivatives:

Vol (W, b; x,y) = 8D (@P)T,
V,oJ(W,b; x,y) = 6.

Random Initialization

W = 0.01 * np.random.randn(D, H)

Works fine for small networks, but can lead to
non-homogeneous distributions of activations
across the layers of a network.

| ook at Some Activation
Statistics

Setup: 10-layer net with 500 neurons on each
layer, using tanh nonlinearities, and initializing as
described In last slide.

Random Initialization

input layer had mean 0.000927 and std 0.998388
hidden layer 1 had mean -6.000117 and std 0.213081
hidden layer 2 had mean -6.600001 and std ©.047551
hidden layer 3 had mean -0.000002 and std ©.010630
hidden layer 4 had mean 0.000001 and std ©.002378
hidden layer 5 had mean 0.000002 and std ©0.000532
hidden layer 6 had mean -0.000000 and std 0.000119
hidden layer 7 had mean 6.000000 and std ©.000026
hidden layer 8 had mean -0.600000 and std ©.000006
hidden layer 9 had mean 6.000000 and std 0.000001
hidden layer 10 had mean -0.000000 and std ©.000000

layer mean " layer std

Random Initialization

input layer had mean 0.000927 and std 0.998388

B IS
hidden layer 1 had mean -6.000117 and std 0.213081
hidden layer 2 had mean -6.600001 and std ©.047551 aC Iva IO nS
hidden layer 3 had mean -6.000002 and std ©.010630
hidden layer 4 had mean 0.000001 and std 0.002378

2

3

4
hidden layer 5 had mean 0.000002 and std ©0.000532 '
hidden layer 6 had mean -0.000000 and std 0.000119 eCOI I le Ze ro
hidden layer 7 had mean 6.000000 and std ©.000026 -

8

9

1

hidden layer 8 had mean -0.600000 and std ©.000006
hidden layer 9 had mean 6.000000 and std 0.000001
hidden layer 10 had mean -0.600000 and std ©.000000

layer mean - layer std

Random Initialization

input layer had 0.000927 and std ©.998388 I t t' Q t' Wh t
;gggen ?zsgr ‘; hgga:\ean -9.990??7 ;nd std 0.213681 n eres Ing ues Ion: a
hidden layer 2 had mean -6.600001 and std ©.047551 . i . .
hidd 1 had -0.0006002 d std ©.010630 ” 'l:h d 'I: | k | k

Siden Tavat h:d :gg: 0.00060601 ai: s:d 0.002378 Wl e gra Ien S OO I e In

hidden layer
hidden layer 5 had mean 0.000002 and std ©.000532

2
3
4
5
hidden layer 6 had mean -0.000000 and std 0.000119 'I:h b k d h ||
hidden layer 7 had mean 06.066000 and std ©.000026 e aC War paSS W en a
hidden layer 8 had mean -0.600000 and std ©.000006

9

1

o had mean -6.60600 and std 0. 600000 activations become zero?

nean layer st
«

hidden layer
hidden layer

Answer: The gradients in the backward pass will
become zero!

1. Perform a feedforward pass, computing the activations for layers [, I3, up to the output layer L, ,
using the equations defining the forward propagation steps

2. For the output layer (layer n;), set

57 = —(y — a™) o ()

3. Forl=nl— 1,n1—2,n,—3,...,2,set

_5(1) — ((W(z))75(1+1)) °f'(z(1))

4. Compute the desired partial derivatives:

Vol (W, b; x,y) = 8D (@P)T,
V,oJ(W,b; x,y) = 6.

Xxavier Initialization

W = np.random.randn(fan_in, fan_out) / np.sqgrt(fan_in)

Reasonable initialization
(Mathematical derivation
assumes linear activations)

Xxavier Initialization

W = np.random.randn(fan_in, fan_out) / np.sqgrt(fan_in)

but it breaks when using
ReLU non-linearity

More Initialization
Technigues

Understanding the difficulty of training deep feedforward neural networks
by Glorot and Bengio, 2010

Exact solutions to the nonlinear dynamics of learning in deep linear neural networks
by Saxe et al, 2013

Random walk initialization for training very deep feedforward networks
by Sussillo and Abbott, 2014

Delving deep into rectifiers: Surpassing human-level performance on ImageNet
classification
by He et al., 2015

Data-dependent Initializations of Convolutional Neural Networks
by Krahenbuhl et al., 2015

All you need is a good init
by Mishkin and Matas, 2015

Choosing an Activation
Function that Helps the
Training

Sigmoid

Activation Functions o(z)=1/(1+e77)
- Squashes numbers to range [0,1]
- - Historically popular since they
/ have nice interpretation as a
el saturating “firing rate” of a neuron
u.;/E
fol 3 problems:
el bos s g o g
) 3 5 1. Saturated neurons “kill” the
Sigmoid gradients
2. Sigmoid outputs are not zero-
centered

3. exp() is a bit compute expensive

lanh

Activation Functions

p
osf] - Squashes numbers to range [-1,1]

.......... S - zero centered (nice)

- " "’ - still kills gradients when saturated :(

]

Rel U

Activation Functions -~ “omputes f(x) = max(0,x)
- Does not saturate (in +region)
| - Very computationally efficient
- Converges much faster than
sigmoid/tanh in practice (e.g. 6x)

....................

: % - Not zero-centered output
- An annoyance:

“dead” in -region

| eaky RelLU

Activation Functions

....................

Leaky RelLU
f(z) = max(0.01z, x)

[Mass et al., 2013]
[He et al., 2015]

- Does not saturate

- Computationally efficient

- Converges much faster than
sigmoid/tanh in practice! (e.g. 6x)

- will not “die”.

Parametric Rectifier (PReLU)
f(z) = max(azx, x)

/

backprop into \alpha
(parameter)

Exponential Linear Unit

Activation Functions [Clevert et al., 2015]

Exponential Linear Units (ELU)

- All benefits of ReLU

- Does not die
- Closer to zero mean outputs

f(x)

- Computation requires exp()

Viaxout

[Goodfellow et al., 2013]

- Does not have the basic form of dot product ->

nonlinearity
- Generalizes RelLU and Leaky RelLU
- Linear Regime! Does not saturate! Does not die!

max(w; z + by, ws z + by)

Problem: doubles the number of parameters/neuron :(

N Practice

Use RelLU. Be careful with your learning rates
Try out Leaky RelLU / Maxout / ELU

Try out tanh but don't expect much

Don’t use sigmoid

Training Algorithms

Stochastic Gradient Descent

m Many machine learning problems feature an objective function that is in the form of a sum

T
fw) = > fi(w)

eN-Ee
ﬁ TV
filw) + fa(w) + .+ fr(w) = > fi(w)

Stochastic Gradient Descent

m Many machine learning problems feature an objective function that is in the form of a sum
T
f(w) =) fi(w)
t=1

m Standard gradient descent takes the following step
T
GD: w'! = w' - 'Vfwh) = wh—puf ZVft(W)
t=1
That is, we average over all the V f;(w) to obtain the step direction

m Stochastic gradient descent (SGD) approximates the average gradient with just one of the T

gradients
SGD: w!tl = w' -yt Vfi(w)

A new gradient V f;(w) is picked at each iteration (typically in sequence or randomly)

Stochastic Gradient Descent
for Neural Networks

e Computing the gradient for the full dataset at each step is slow
Especially if the dataset is large
e Note:
For many loss functions we care about, the gradient is the average over losses on individual

examples

N

1 g 5 .

on O Wi = f(i, w, b))’
T =1

L(X,y,w,b) =

e |dea:
Pick a single random training example
Estimate a (noisy) loss on this single training example (the stochastic gradient)

Compute gradient wrt. this loss

Take a step of gradient descent using the estimated loss
Wi = Wy — aAL(X.w,. b)

Batch GD vs Stochastic GD

.0 . A . A
D00 .S00 0 S00 1000 1500 2000 {000 -500 0O 500 1000 1500 2000
0\' A

Batch: gradient Stochastic: single-example gradient

r +— x—nVF(x) r +— x —nVEF;(x)

Mini-batch SGD

Loop:

1. Sample a batch of data

2. Forward prop it through the graph, get loss
3. Backprop to calculate the gradients

4. Update the parameters using the gradient

hidden layer 1 hidden layer 2

Momentum Upaate

P 4 'y J a
\/ ™ Y | | 1T I -]
- vda - | Upaacte
f «

AA A A A CA

X += - learning rate * dx

. 5
MAamanrmndsimm A adre
P LIl FRMFill - g . -

v AL C
f

v =mu * v - learning rate * dx # integrate velocity
X

+— 04 r ey radn e E V-
= VvV A,.;L,{*,Ej&c.‘ G POS1T105
£

- Physical interpretation as ball rolling down the loss function + friction (mu coefficient).
- mu = usually ~0.5, 0.9, or 0.99 (Sometimes annealed over time, e.g. from 0.5 -> 0.99)

- Allows a velocity to “build up™ along shallow directions
- Velocity becomes damped in steep direction due to quickly changing sign

Nesterov Momentum Update

x ahead = x + mu * v
evaluate dx ahead (the gradient at x ahead instead of at x)

v =mu * v - learning rate * dx ahead

X += v
Momentum update Nesterov momentum update
“lookahead” gradient
step (bit different than
momentum momentum original)
step step

actual step
actual step

gradient
step

Nesterov momentum. Instead of evaluating gradient at the current position (red circle), we know that our momentum is about to
carry us to the tip of the green arrow. With Nesterov momentum we therefore instead evaluate the gradient at this "looked-

ahead" position.

Nesterov Momentum Update

x ahead = x + mu * v

v mu * v - learning rate * dx ahead
X

+= v

x ahead = x + mu * v

express the update in term
of x_ahead, instead of x

V_prev = v
v =mu * v - learning rate * dx

X += -mu * v prev + (1 + mu) * v

Per-parameter adaptive

learning rate methods
Adagrad

cache 4= dx**2

X += - learning rate * dx / (np.sgrt(cache) + eps)

RMSprop

cache = decay rate * cache + (1 - decay rate) * dx**2
X += - learning rate * dx / (np.sgrt(cache) + eps)

Adam

m = betal*m + (l-betal)*dx
= betal2*v + (l-beta2)*(dx**2)
X += - learning rate * m / (np.sgrt(v) + eps)

<

Annealing the Learning
Rates

SGD, SGD+Momentum, Adagrad, RMSProp, Adam all have
learning rate as a hyperparameter.

A
loss => Learning rate decay over time!

step decay:
e.g. decay learning rate by half every few epochs.

low learning rate

_ | exponential decay:
high learning rate

_ a:aoe—

1/t decay:
epoch g a:ao/(l +kt)

kt

good learning rate

Compare Learning Methods

e http://cs231n.github.io/neural-networks-3/#sgd

http://cs231n.github.io/neural-networks-3/#sgd

N Practice

e Adam is the default choice in most cases

* |nstead, SGD variants based on (Nesterov’s)
momentum are more standard than second-order

methods because they are simpler and scale more
easily.

* |f you can afford to do full batch updates then try
out L-BFGS (Limited-memory version of Broyden—
Fletcher—Goldfarb—-Shanno (BFGS) algorithm).
Don't forget to disable all sources of noise.

Regularization

DropOut

‘randomly set some neurons to zero in the forward pass”

.-F‘.-ﬂi:v

AN
oY\ W/ e\
¥a\Ya

N7 N7

e\ X 4«“\

/0)\

Jo—rA Jo—)
\g?/l.‘\\

> 4
;"O\ 4”"

7
B~ BRAXA
" ATA " ATA \’

NS\X X/
O
N

w XY\

[Srivastava et al., 2014]

(b) After applying dropout.

a) Standard Neural Net

DropOut

Waaaait a second...
How could this possibly be a good idea?

Forces the network to have a redundant representation.

A :
W, has an ear X g
Q - has atall \“‘\
<_> - is furry X——— . cat
- — score
"~ has claws o

- mischievous X
look

OO
pE g g

DropOut

Waaaait a second...
How could this possibly be a good idea?

Another interpretation:

Dropout is training a large ensemble
of models (that share parameters).

Each binary mask is one model, gets
trained on only ~one datapoint.

DropOut

At test time....

Ideally:
want to integrate out all the noise

Monte Carlo approximation:

do many forward passes with
different dropout masks, average all
predictions

DropOut

At test time....
Can in fact do this with a single forward pass! (approximately)

Leave all input neurons turned on (no dropout).

J during test: a = w0*x + w1l *y With p=0.5, using all inputs
a . . in the forward pass would
1 durlng train: inflate the activations by 2x
VRN _ from what the network was
::,\ /,:' E[a] =" (WO*O +w1*0 “used to” during training!
* * => Have to compensate by
WO O + W1 y scaling the activations back
w0 / wi wO*xX + w1*0 down by %
N) wO*x + w1*y)
X LY)
S =% * (2w0*x + 2 w1'y)

=% * (W0*x + w1*y)

Normalization

Batch Normalization

[loffe and Szegedy, 2015]

Normalize: - Improves gradient flow

(k) _ (k) through the network
7k) = 2 Bip] - Allows higher learning rates

v/ Var[z(¥)] - Reduces the strong
And then allow the network to squash dependence on initialization
the range if it wants to: - Acts as a form of
" () ~(k) = regularization in a funny way,
yw =g\ + 0 and slightly reduces the need

for dropout, maybe

Batch Normalization

Normalize:

And then allow the network to squash
the range if it wants to:

y B = ~(B)3(K) 4 (k)

[loffe and Szegedy, 2015]

Note, the network can learn:
v*) = | /Var[z(¥)]
Bk = E[z(9)]

to recover the identity
mapping.

Batch Normalization

Input: Values of z over a mini-batch: B = {1 _,, };
Parameters to be learned: ~, 3
Output: {y; = BN, g(z;)}

m

1
B — — T; // mini-batch mean
L m Z I

; 1 . - .
05 — — Y (z; — u)? // mini-batch variance
B
i=1
o8 Ti — B :
T; — — / // normalize
\/(7% + €

Yi « 7Z; + B = BN, 5(x;) // scale and shift

[loffe and Szegedy, 2015]

Note: at test time BatchNorm layer
functions differently:

The mean/std are not computed
based on the batch. Instead, a single
fixed empirical mean of activations
during training is used.

(e.g. can be estimated during training
with running averages)

Batch Normalization

Batch Normalization [loffe and Szegedy, 2019]
FC Usually inserted after Fully
BlN ~ Connected / (or Convolutional, as
, we'll see soon) layers, and before
‘al‘“ / nonlinearity.
FC ,/"f
BN " Problem: do we fE(k) L 37() — E[CU()]
necessarily want a unit \/—_k_
tanh gaussian input to a Var[x()]
tanh layer?

Ensembles

Model Ensembles

1. Train multiple independent models
2. At test time average their results

Enjoy 2% extra performance

Model Ensembles

Fun Tips/Tricks:

- can also get a small boost from averaging multiple
model checkpoints of a single model.

- keep track of (and use at test time) a running average
parameter vector:

True:
data batch = dataset.sample data batch()

loss = network.forward(data batch)
dx network.backward()

X learning rate * dx

X test = 0.995*x test + 0.005*X

Ayperparameter
Optimization

Hyperparameter
Optimization

Hyperparameters to play with:

- network architecture

- learning rate, its decay schedule, update type
- regularization (L2/Dropout strength)

neural networks practitioner
music = loss function

Hyperparameter
Optimization

Cross-validation strategy

| like to do coarse -> fine cross-validation in stages

First stage: only a few epochs to get rough idea of what params work
Second stage: longer running time, finer search
... (repeat as necessary)

Tip for detecting explosions in the solver:
If the cost is ever > 3 * original cost, break out early

Hyperparameter
Optimization

For example: run coarse search for 5 epochs

max count = 100

“gy . .
for count in xrange(max_count): note it's best to optimize
reg = 10**uniform(-5, 5) <
lr = 10**uniform(-3, -6) in Iog Spacel
trainer = ClassifierTrainer()
model = init two layer model(32%32*3, 50, 10) # input size, hidden size, number of classes
trainer = ClassifierTrainer()
best model local, stats = trainer.train(X train, y train, X val, y val,
model, two layer net,
num epochs=5, reg=reg,
update="momentum’, learning rate decay=0.9,

sample batches = True, batch size = 100,
learning rate=1lr, verbose=False)

val acc: 0.412000, lr: 1.405206e-04, reg: 4.793564e-01, (1 / 100)

val acc: 0.214000, lr: 7.231888e-066, reg: 2.321281e-04, (2 / 100)

val acc: 0.208000, lr: 2.119571e-06, reg: 8.011857e+01, (3 / 100)

val acc: 0.196000, lr: 1.551131e-05, reg: 4.374936e-05, (4 / 100)

val acc: 0.079000, lr: 1.753300e-05, reg: 1.200424e+03, (5 / 100)

val acc: 0.223000, lr: 4.215128e-05, reg: 4.196174e+01, (6 / 100)

_ val acc: 0.441000, lr: 1.750259e-04, reg: 2.110807e-04, (7 / 100)
nice val acc: 0.241000, Lr: 6.749231e-05, reqg: 4.226413e+01, (8 / 100)
» | val acc: 0.482000, Llr: 4.296863e-04, reg: 6.642555e-01, (9 / 100)

val acc: 0.079000, lr: 5.401602e-06, reg: 1.599828e+04, (10 / 100)

val acc: 0.154000, lr: 1.618508e-066, reg: 4.925252e-01, (11 / 100)

Hyperparameter
Optimization

Now run finer search...

max_count = 160 adjust range max_count = 100

for count in xrange(max_count): for count in xrange(max count):
reg = 10**uniform(-5, 5) > reg = 10**uniform(-4, 0)
lr = 10**uniform(-3, -6) Lr = 10**uniform(-3, -4)

val acc: 0.527000, lr: 5.340517e-04, reg: 4.097824e-01, (0 / 100)

val acc: 0.512000, Llr: .349727e-02, (2

0 8.680827e-04, reg: 1 / 100)
val acc: 0.461000, lr: 1.028377e-04, reg: 1.220193e-02, (3 / 100)
val acc: 0.460000, 1r: 1.113730e-04, reg: 5.244309e-02, (4 / 100)) .
val acc: 0.498000, Lr: 9.477776e-04, reg: 2.001293e-03, (5 / 108) 53% - relatively good
val acc: 0.469000, Llr: 1.484369e-04, reg: 4.328313e-01, (6 / 100) for a 2-layer neural net
val acc: 0.522000, lr: 5.586261e-04, reg: 2.312685e-04, (7 / 100) . .
val _acc: 0,530000, Lr: 5.808183e-04, reg: 8,259964e-62, (8 / 108) with 50 hidden neurons.
val acc: 0.489000, Llr: 1.979168e-04, reg: 1.010889e-04, (9 / 100)
val acc: 0.490000, lr: 2.036031e-04, reg: 2.406271e-03, (10 / 100)
val acc: 0.475000, lr: 2.021162e-04, reg: 2.287807e-01, (11 / 100)
val acc: 0.460000, lr: 1.135527e-04, reg: 3.905040e-02, (12 / 1600)
val acc: 0.515000, lr: 6.947668e-04, reg: 1.562808e-02, (13 / 100)
| val acc: 0.531000, lr: 9.471549e-04, reg: 1.433895e-03, (14 / 100) |
val acc: 0.5609000, lr: 3.140888e-04, reg: 2.857518e-01, (15 / 100)
val acc: 0.514000, Llr: 6.438349e-04, reg: 3.033781le-01, (16 / 100)
val acc: 0.502000, lr: 3.921784e-04, reg: 2.707126e-04, (17 / 100)
val acc: 0.509000, lr: 9.752279e-04, reg: 2.850865e-03, (18 / 100)
val acc: 0.500000, lr: 2.412048e-04, reg: 4.997821e-04, (19 / 100)
val acc: 0.466000, lr: 1.319314e-04, reg: 1.189915e-02, (20 / 100)
val acc: 0.516000, lr: 8.039527e-04, reg: 1.528291e-02, (21 / 160)

Hyperparamter Optimization

Random Search vs. Grid Search

Grid Layout Random Layout

Unimportant parameter
Unimportant parameter

Important parameter Important parameter

Random Search for Hyper-Parameter Optimization
Bergstra and Bengio, 2012

Monitoring the
| earning Process

Double-check that the Loss
IS Reasonable

def init two layer model(input size, hidden size, output size):

model {}
V1'] = 0.0001 * np.random.randn(input size, hidden size)
] = np.zeros(hidden size)
] = 0.0001 * np.random.randn(hidden size, output size)

] np.zeros(output size)
mode L

model = init two layer model(32*32*3, 50, 10) # input size, hidden size, number of classes
loss, grad = two layer net(X train, model, y train| 0.0 . . -
Srlat 1 ony sy disable regularization

2.30261216167 ~ o
< loss ~2.3.
“correct “ for returns the loss and the

10 classes gradient for all parameters

Double-check that the Loss
IS Reasonable

def init two layer model(input size, hidden size, output size):

model {}
¥1'] = 0.0001 * np.random.randn(input size, hidden size)
] = np.zeros(hidden size)
] = 0.0001 * np.random.randn(hidden size, output size)
D2"'] np.zeros(output size)
model

model = init two layer model(32%32+%3, 50, 10) # ingui _size, hidden size, number of classes
loss, grad = two layer net X train, model, y train/| le3 crank up regularization
print loss

3.06859716482 \
loss went up, good. (sanity check)

Overfit Very Small Portion of
the Trammg Data

model = init two layer model(3
trainer = ClassifierTrainer ()
X tiny = X train[:20] # tak
y tiny = y train[:20]
best model, stats = trainer.train(X tiny, y tiny, X t' ny, y tiny,
d L, tw 1 y -
p h rcg=ﬂ 0,
pd ate sqd' l ing rate decay=

pl b h fal_)t,
learnxng rate=lv 3, verbose=True)

The above code:
- take the first 20 examples from
CIFAR-10
- turn off regularization (reg = 0.0)
- use simple vanilla ‘sgd’

model = init two layer model(32%32+*3, 50, 10) # input size, hidden size, number of classes

Lets try to train nOw trainer = ClassifierTrainer()
" X_tiny = X train[:20] # take 20 examples
y tiny = y train[:20]
best model, stats = trainer.train(X tiny, y tiny, X tiny, y tiny,

model, two layer net,
num epochs=200, reg=0.0,

Tip: Make sure that T et e

learning rate=le-3, verbose=True)

you Can Overﬂt very Finished epoch 1 / 200: cost 2.302603, train: 0.400000, val 6.400000, Lr 1.000000e-03
Finished epoch 2 / 200: cost 2.302258, train: 0.450000, val 0.450000, lr 1.000000e-03
= Finished epoch 3 / 200: cost 2.301849, train: 0.600000, val 0.660000, lr 1.000000e-03
Sma" pOrtlon Of the Finished epoch 4 / 200: cost 2.301196, train: 0.650000, val 0.650000, lr 1.000000e-03
Finished epoch 5 / 200: cost 2.300044, train: 0.650000, val 0.650000, Lr 1.000000e-03
B B Finished epoch 6 / 200: cost 2.297864, train: 6.550000, val ©.550000, lr 1.000000e-03
tra|n|ng data Finished epoch 7 / 200: cost 2.293595, train: 0.600000, val ©.600000, Lr 1.000000e-03
Finished epoch 8 / 200: cost 2.285096, train: 0.550000, val 0.550000, lr 1.000000e-03
Finished epoch 9 / 200: cost 2.268094, train: 6.550000, val ©.550000, lr 1.000000e-03

Finished epoch 10 / 200: cost 2.234787, train: 0.500000, val 6.500000, lr 1.000000e-03

Finished epoch 11 / 200: cost 2.173187, train: 6.500000, val 0.500000, lr 1.000000e-03

Finished epoch 12 / 200: cost 2.076862, train: 0.500000, val 06.500000, lr 1.000000e-03

Finished epoch 13 / 200: cost 1.974096, train: 0.400000, val 0.400000, lr 1.000000e-03

Finished epoch 14 / 200: cost 1.895885, train: 0.400000, val 0.400000, 1lr 1.000000e-03

Finished epoch 15 / 200: cost 1.820876, train: 0.450000, val 0.450000, lr 1.000000e-03

Finished epoch 16 / 200: cost 1.737430, train: 0.450000, val 0.450000, lr 1.000000e-03

Finished epoch 17 / 200: cost 1.642356, train: 0.500000, val 0.500000, lr 1.000000e-03

Ve sSmM a" I OSS Finished epoch 18 / 200: cost 1.535239, train: 6.600000, val ©.600000, lr 1.000000e-03

rjy, . Finished epoch 19 / 200: cost 1.421527, train: 0.600000, val 0.600000, 1lr 1.000000e-03

Fldadabhad anaalh NA 1 NAN. aaad T AAETIEN Suwndew. N cTcnonnn wemdl N cochAnnn T oo % AAAAANL NN

Finished epoch 195
Finished epoch 196

train accuracy 1.00, nined goc

n ice | Finished epoch 198
M Finished epoch 199 / 200: cost ©.002617, train: 1.000000, val 1.000000, lr 1.0600000e-03
Finished epoch 200 / 200: cost ©.002597, train: 1.000000, val 1.000000, lr 1.600000e-03
finished optimization. best validation accuracy: 1.000000

200: cost ©.002694. train: 1.000000. val 1.000000. lr 1.000000e-03
200: cost 0.002674, train: 1.000000, val 1.000000, lr 1.000000e-03
200: cost 0.002655, train: 1.000000, val 1.000000, lr 1.000000e-03

200: cost ©0.002635, train: 1.000000, val 1.000000, lr 1.000000e-03

TR T g Ty

»

. model = init_two layer model(32%*32*3, 50, 10) # input size, hidden size, number of classes
Lets try to traln now trainer = ClassifierTrainer()
. best model, stats = trainer.train(X train, y train, X val, y val,
model, two layer net,
num epochs=10, reg=0.000001,
update='sgd’', learning rate decay=1,
e,
learning rate=le-6,|verbose=True)

| like to start with small

: : Finished epoch 1 / 10:|cost 2.302576, |trair: ©0.080000, 1 6.103000, lr 1.000000e-06
regU|arlzatIOn and ﬁnd Finished epoch 2 / 10:|cost 2.302582, |train: ©.121000, 1 6.124000, 1lr 1.000000e-06
Finished epoch 3 / 10:|cost 2.302558, |train: ©.119000, L 0.138000, lr 1.000000e-06
Iearn|ng rate that Finished epoch 4 / 10:|cost 2.362519, |trair|: ©.127600, al ©.151000, lr 1.600000e-06
Finished epoch 5 / 10:|cost 2.302517, |train: ©.158000, 1 6.171000, 1lr 1.000000e-06
Finished epoch 6 / 10:|cost 2.302518, |trairn: ©.179000, 1 0.172000, lr 1.000000e-06
makes the IOSS go Finished epoch 7 / 10:|cost 2.302466, [trair]: ©.180000, al ©.176000, Lr 1.600000e-06
Finished epoch 8 / 10:|cost 2.302452, |train: 0.175000, L 6.185000, lr 1.000000e-06
Finished epoch 9 / 10:|cost 2.302459, |trair|: 0.206000, 1 6.192000, 1lr 1.000000e-06

down Finished epoch 10 / 18} cost 2.302420| traijn: 0.190000, Jval ©.192000, Lr 1.000000e-06

) finished optimization.lbhest validatiod accuracy: 0. 0

Loss barely changing: Learning rate is
loss not going down: probably too low

learning rate too low Notice train/val accuracy goes to 20%

though, what’s up with that? (remember
this is softmax)

model = init two layer model(32*32%3, 50, 10) # input size, hidden size, number of cla

Lets try to train nOW_ .. trainer = ClassifierTrainer()

best model, stats = trainer.train(X train, y train, X val, y val,
model, two layer net,
num epochs=10, reg=0.000001,
update='sgd', learning rate decay=1,
sample batches = True,

I Iike to Start With Sma" learning rate=le6, verbose=True)

regularization and find |

|

learning rate that Okay now lets try learning rate 1e6. What could
makes the loss go possibly go wrong?

down.

loss not going down:
learning rate too low

Lets try to train now...

| like to start with small
regularization and find
learning rate that
makes the loss go
down.

loss not going down:
learning rate too low
loss exploding:
learning rate too high

model = init two layer model(32*32*3, 50, 10) # input size, hidden size, number of classes
trainer = ClassifierTrainer()
best model, stats = trainer.train(X train, y train, X val, y val,

model, two layer net,

num epochs=10, reg=0.000001,

update='sgd', learning rate decay=1,

sample batches = True,

learning rate=le6, verbose=True)

/home/karpathy/cs231n/code/cs231n/classifiers/neural net.py:50: RuntimewWarning: divide by zero en
countered in log

data loss = -np.sum(np.log(probs[range(N), y])) / N
/home/karpathy/cs231n/code/cs231n/classifiers/neural net.py:48: RuntimeWarning: invalid value enc
ountered in subtract

probs = np.exp(scores - np.max(scores, axis=1, keepdims=True))

Finished epoch 1 / 10: cost nan, train: 0.091000, val 0.087000, lr 1.000000e+06
Finished epoch 2 / 10: cost nan, train: 0.095060, val 0.087000, lr 1.000000e+06
Finished epoch 3 / 10: cost nan, train: 6.100008, val 6.087060, lr 1.000000e+06

cost: NaN almost
always means high
learning rate...

Monitor and visualize the loss curve

25

loss

20}

low learning rate

high learning rate

good learning rate

s epoch
0 20 40 &0 80 100
Epoch

LOSS - =g w . .
Bad initialization

——— aprime suspect

time

Monitor and visualize the accuracy:

0.80

075}
070}

0.65

big gap = overfitting

=2 increase regularization strength?

0.60 |-

Clasification accuracy

(=]
w
w

050

Nno gap
0as| | =>increase model capacity?

— Training accuracy
— Validation accuracy

040 - . ;
0 20 40 60 80 100

:::::

Track the ratio of weight updates / weight magnitudes:

assume parameter vector W and 1ts gradient vector dw
param scale = np.linalg.norm(W.ravel())

update = -learning rate*dwW # simple SGD update

update scale = np.linalg.norm(update.ravel())

W += update # the actual update

print update scale / param scale # want ~le-3

ratio between the values and updates: ~ 0.0002 / 0.02 = 0.01 (about okay)
want this to be somewhere around 0.001 or so

