ELEC/COMP 576:
Training Convnets

Lecture 5

Ankit B. Patel
Baylor College of Medicine (Neuroscience Dept.)
Rice University (ECE Dept.)

Training Convnets;
Problems and Solutions

Training on CIFAR10

e http://cs.stanford.edu/people/karpathy/convnet|s/
demo/cifar10.html

[Fei-Fei Li, Andre| Karpathy, Justin Johnson]

http://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.html
http://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.html

Data Preprocessing

Zero-Center & Normalize Data

original data zero-centered data normalized data

X -= np.mean(X, axis = 0). X /= np.std(X, axis = 0)

(Assume X [NxD] is data matrix,
each example in a row)

[Fei-Fei Li, Andre] Karpathy, Justin Johnson]

PCA & Whitening

original data decorrelated data whitened data

-10 . 0 -1(
-10 -5 0 5 19 . 0 5 0 5 19 1,"10 5 0 5

(data has diagonal (covariance matrix is the
covariance matrix) identity matrix)

[Fei-Fel Li, Andre| Karpathy, Justin Johnson]

In Practice, for Images:
Center Only

e.g. consider CIFAR-10 example with [32,32,3] images

- Subtract the mean image (c.g. AlexNet
(mean image = [32,32,3] array)

- Subtract per-channel mean (e.g. VGGNet
(mean along each channel = 3 numbers)

Not common to normalize
variance, to do PCA or
whitening

[Fei-Fei Li, Andre] Karpathy, Justin Johnson]

Data Augmentatlon

During training:

* Random crops on the original
image

* Horizontal reflections

During testing:

* Average prediction of image
augmented by the four corner
patches and the center patch +
flipped image (10 augmentations
of the image

| Data augmentation reduces |

~overfiting

a. No augmentation

v
224x224
N
- /
)

b. Flip augmentahon 2 in

&

c. Crop+Flip augmentation

Weignt Initialization

Interesting Question:
What happens when the weights are
initialized to 07 (2 min)

Answer

1. Perform a feedforward pass, computing the activations for layers [, I3, up to the output layer
using the equations defining the forward propagation steps

n;?

2. For the output layer (layer n;), set

6("1) — _(y i a(m)) .f’(z(m))

3. Forl=nl— l,nl—2,n,—3,...,2,set

_5(1) — ((W(I))Té‘(l-}-l)) .fl(z(l))

4. Compute the desired partial derivatives:

Vol (W, b;x,y) = 8D (@7,
V,0J(W, b; x,3) = 60+,

Random Initialization

W = 0.01 * np.random.randn(D, H)

Works fine for small networks, but can lead to
non-homogeneous distributions of activations
across the layers of a network.

[Fei-Fel Li, Andre| Karpathy, Justin Johnson]

| ook at Some Activation
Statistics

Setup: 10-layer net with 500 neurons on each
layer, using tanh nonlinearities, and initializing as
described In last slide.

Random Initialization

input layer had mean ©0.000927 and std 0.998388

hidden layer 1 had mean -6.000117 and std 0.213081
hidden layer 2 had mean -6.600001 and std ©.047551
hidden layer 3 had mean -0.000002 and std ©.010630
hidden layer 4 had mean 0.000001 and std ©.002378

hidden layer 5 had mean 0.000002 and std ©.000532

hidden layer 6 had mean -0.000000 and std 0.000119
hidden layer 7 had mean 6.000000 and std ©.000026

hidden layer 8 had mean -6.600000 and std ©.000006
hidden layer 9 had mean 6.000000 and std ©.000001

hidden layer 10 had mean -0.600000 and std ©.000000

layer mean layer std
> —_— o - — . - . 4 1
L
. e — C—
——ee GO ~F0) P I 00 pren — — 0] pr— — 00—

1. Andrej Karpathy, Justin Johnson]

Random Initialization

input layer had mean 0.000927 and std 0.998388

i o
hidden layer 1 had mean -6.000117 and std 0.213081
hidden layer 2 had mean -6.600001 and std ©.047551 aC Iva IO nS
hidden layer 3 had mean -0.000002 and std ©.010630
hidden layer 4 had mean 0.000001 and std ©.002378

2

3

4
hidden layer 5 had mean 0.000002 and std ©.000532 '
hidden layer 6 had mean -06.600000 and std ©.000119 eCOI I le Ze ro
hidden layer 7 had mean 6.000000 and std ©.000026 -

8

9

1

hidden layer 8 had mean -0.600000 and std ©.000006
hidden layer 9 had mean 6.000000 and std ©.000001
hidden layer 10 had mean -0.000000 and std ©.000000

layer mean " layer std

05 10-10-05 ¢ - - . h L 38 |

'Fei-Fei Li. Andrei Karpathy, Justin Johnson]

Random Initialization

input layer had mean 0.000927 and std 0.998388

hidden
hidden
hidden
hidden
hidden
hidden
hidden
hidden
hidden
hidden

layer 1
layer 2
layer 3
layer 4
layer 5
layer 6
layer 7
layer 8
layer 9
layer 1

had
had
had
had
had
had
had
had
had

mean -0.000117 and std ©.213081

mean -8.600001 and std ©.047551

mean -0.000002 and std ©.010630

mean ©.000001 and std 0.002378
mean 0.000002 and std 0.000532

mean -0.000000 and std ©.000119

mean 0.000000 and std 0.000026

mean -0.0600000 and std ©.000006

mean 0.000000 and std 0.000001

© had mean -0.000000 and std ©.000000

Interesting Question: \What

will the gradients look like in

the backward pass when all
activations become zero?

layer std

Sy - - -

sy

Fei-Fei

i Andrej Karpat

f]y J'Ljétih Johnson]

Answer: The gradients in the backward pass will
become zero!

1. Perform a feedforward pass, computing the activations for layers [, I3, up to the output layer L, ,
using the equations defining the forward propagation steps

2. For the output layer (layer n;), set

57 = —(y — a™) o ()

3. Forl=nl— 1,n1—2,n,—3,...,2,set

_5(1) — ((W(z))75(1+1)) °f'(z(1))

4. Compute the desired partial derivatives:

Vol (W, b; x,y) = 8D (@P)T,
V,oJ(W,b; x,y) = 6.

Xxavier Initialization

W = np.random.randn(fan_in, fan_out) / np.sqgrt(fan_in)

Reasonable initialization
(Mathematical derivation
assumes linear activations)

[Fei-Fel Li, Andre| Karpathy, Justin Johnson]

Xxavier Initialization

W = np.random.randn(fan_in, fan_out) / np.sqgrt(fan_in)

but it breaks when using
ReLU non-linearity

''''''

[Fei-Fei Li, Andre| Karpathy, Justin Johnson]

More Initialization
Technigues

Understanding the difficulty of training deep feedforward neural networks
by Glorot and Bengio, 2010

Exact solutions to the nonlinear dynamics of learning in deep linear neural networks
by Saxe et al, 2013

Random walk initialization for training very deep feedforward networks
by Sussillo and Abbott, 2014

Delving deep into rectifiers: Surpassing human-level performance on ImageNet
classification
by He et al., 2015

Data-dependent Initializations of Convolutional Neural Networks
by Krahenbuhl et al., 2015

All you need is a good init
by Mishkin and Matas, 2015

[Fei-Fei Li, Andre] Karpathy, Justin Johnson]

Choosing an Activation
Function that Helps the
Training

Sigmoid

Activation Functions o(z)=1/(1+e7)
- Squashes numbers to range [0,1]
¥ AR - Historically popular since they
have nice interpretation as a
saturating “firing rate” of a neuron
/f 3 problems:

1 A " i
-10 -5 5 10

1. Saturated neurons “kill” the
Sigmoid gradients
2. Sigmoid outputs are not zero-
centered
3. exp() is a bit compute expensive

[Fei-Feil Li, Andrej] Karpathy, Justin Johnson]

lanh

Activation Functions

¥
[/
- Squashes numbers to range [-1,1]
.......... T - zero centered (nice)
- . | - still kills gradients when saturated :(
i dr
R
tanh(x)

[Fei-Fei Li, Andre| Karpathy, Justin Johnson]

Rel U

Activation Functions -~ “omputes f(x) = max(0,x)
- Does not saturate (in +region)
| - Very computationally efficient
- Converges much faster than
sigmoid/tanh in practice (e.g. 6x)

....................

: % - Not zero-centered output
- An annoyance:

“dead” in -region

[Fei-Fei Li, Andre] Karpathy, Justin Johnson]

Activation Functions

..........

| eaky RelLU

AAAAAAAAA

Leaky RelLU

f(z) = max(0.01z, x)

[Mass et al., 2013]
[He et al., 2015]

- Does not saturate

- Computationally efficient

- Converges much faster than
sigmoid/tanh in practice! (e.g. 6x)

- will not “die”.

Parametric Rectifier (PReLU)
f(z) = max(azx, x)

/

backprop into \alpha
(parameter)

[Fei-Fel Li, Andre| Karpathy, Justin Johnson]

Exponential Linear Unit

Activation Functions [Clevert et al., 2015]

Exponential Linear Units (ELU)

- All benefits of ReLU

- Does not die
- Closer to zero mean outputs

f(x)

. _o - Computation requires exp()
D ik 24
flx) = {(1 (exp(z)—1) ifz <0

[Fei-Fei Li, Andre| Karpathy, Justin Johnson]

Viaxout

[Goodfellow et al., 2013]

- Does not have the basic form of dot product ->

nonlinearity
- Generalizes RelLU and Leaky RelLU
- Linear Regime! Does not saturate! Does not die!

max(w; z + by, ws z + by)

Problem: doubles the number of parameters/neuron :(

[Fei-Fel Li, Andre| Karpathy, Justin Johnson]

N Practice

Use RelLU. Be careful with your learning rates
Try out Leaky RelL,U / Maxout / ELU

Try out tanh but don't expect much

Don’t use sigmoid

[Fei-Fei Li, Andre] Karpathy, Justin Johnson]

Training Algorithms

Stochastic Gradient Descent

m Many machine learning problems feature an objective function that is in the form of a sum

T
fw) = > fi(w)

eN-Ee
ﬁ TV
filw) + fa(w) + .+ fr(w) = > fi(w)

Stochastic Gradient Descent

m Many machine learning problems feature an objective function that is in the form of a sum
T
f(w) =) fi(w)
t=1

m Standard gradient descent takes the following step
T
GD: w'! = w' - 'Vfwh) = wh—puf ZVft(W)
t=1
That is, we average over all the V f;(w) to obtain the step direction

m Stochastic gradient descent (SGD) approximates the average gradient with just one of the T

gradients
SGD: w!tl = w' -yt Vfi(w)

A new gradient V f;(w) is picked at each iteration (typically in sequence or randomly)

Stochastic Gradient Descent
for Neural Networks

e Computing the gradient for the full dataset at each step is slow
Especially if the dataset is large
e Note:
For many loss functions we care about, the gradient is the average over losses on individual

examples

N

1 g 5 .

on O Wi = f(i, w, b))’
T =1

L(X,y,w,b) =

e |dea:
Pick a single random training example
Estimate a (noisy) loss on this single training example (the stochastic gradient)

Compute gradient wrt. this loss

Take a step of gradient descent using the estimated loss
Wi = Wy — aAL(X.w,. b)

Batch GD vs Stochastic GD

.0 . A . A
D00 .S00 0 S00 1000 1500 2000 {000 -500 0O 500 1000 1500 2000
0\' A

Batch: gradient Stochastic: single-example gradient

r +— x—nVF(x) r +— x —nVEF;(x)

Mini-batch SGD

Loop:

1. Sample a batch of data

2. Forward prop it through the graph, get loss
3. Backprop to calculate the gradients

4. Update the parameters using the gradient

hidden layer 1 hidden layer 2

Momentum Upaate

X += - learning rate * dx

v =mu * v - learning rate * dx # integrate velocity

X += v # i1integrate position

- Physical interpretation as ball rolling down the loss function + friction (mu coefficient).
- mu = usually ~0.5, 0.9, or 0.99 (Sometimes annealed over time, e.g. from 0.5 -> 0.99)

- Allows a velocity to “build up™ along shallow directions
- Velocity becomes damped in steep direction due to quickly changing sign

[Fei-Fei Li, Andre| Karpathy, Justin Johnson]

Nesterov Momentum Update

x ahead = x + mu * v
evaluate dx ahead (the gradient at x ahead instead of at x)

v =mu * v - learning rate * dx ahead

X += v
Momentum update Nesterov momentum update
“lookahead” gradient
step (bit different than
momentum momentum original)
step step

actual step
actual step

gradient
step

Nesterov momentum. Instead of evaluating gradient at the current position (red circle), we know that our momentum is about to
carry us to the tip of the green arrow. With Nesterov momentum we therefore instead evaluate the gradient at this "looked-

ahead" position.

[Fei-Fei Li, Andre] Karpathy, Justin Johnson]

Nesterov Momentum Update

x ahead = x + mu * v

v =mu * v - learning rate * dx ahead

x ahead = x + mu * v

express the update in term
of x_ahead, instead of x

V_prev = v
v =mu * v - learning rate * dx
X += -mu * v prev + (1 + mu) * v

|[Fei-Feil Li, Andrej Karpathy, Justin Johnson]

Per-parameter adaptive

learning rate methods
Adagrad

cache 4= dx**2

X += - learning rate * dx / (np.sgrt(cache) + eps)

RMSprop

cache = decay rate * cache + (1 - decay rate) * dx**2
X += - learning rate * dx / (np.sgrt(cache) + eps)

Adam

m = betal*m + (l-betal)*dx
v = beta2*v + (l-betal2)*(dx**2)
X += - learning rate * m / (np.sgrt(v) + eps)

[Fei-Fel Li, Andre| Karpathy, Justin Johnson]

Annealing the Learning
Rates

SGD, SGD+Momentum, Adagrad, RMSProp, Adam all have
learning rate as a hyperparameter.

A
loss => Learning rate decay over time!

step decay:

o Dl e.g. decay learning rate by half every few epochs.
_ | exponential decay:
high learning rate ket

\\— um e

1/t decay:
epoch g a:ao/(l +kt)

good learning rate

[Fei-Fei Li, Andre| Karpathy, Justin Johnson]

Compare Learning Methods

e http://cs231n.github.io/neural-networks-3/#sgd

http://cs231n.github.io/neural-networks-3/#sgd

N Practice

e Adam is the default choice in most cases

* |nstead, SGD variants based on (Nesterov’s)
momentum are more standard than second-order

methods because they are simpler and scale more
easily.

* |f you can afford to do full batch updates then try
out L-BFGS (Limited-memory version of Broyden—
Fletcher—Goldfarb—-Shanno (BFGS) algorithm).
Don't forget to disable all sources of noise.

[Fei-Fei Li, Andre| Karpathy, Justin Johnson]

Regularization

DropOut

‘randomly set some neurons to zero in the forward pass”

.-F‘.-ﬂi:v

AN
oY\ W/ e\
¥a\Ya

N7 N7

e\ X 4«“\

/0)\

Jo—rA Jo—)
\g?/l.‘\\

> 4
;"O\ 4”"

7
B~ BRAXA
" ATA " ATA \’

NS\X X/
O
N

w XY\

[Srivastava et al., 2014]

(b) After applying dropout.

a) Standard Neural Net

DropOut

Waaaait a second...
How could this possibly be a good idea?

Forces the network to have a redundant representation.

A :
W, has an ear X g
Q - has atall \“‘\
<_> - is furry X——— . cat
- — score
"~ has claws o

- mischievous X
look

OO
pE g g

DropOut

Waaaait a second...
How could this possibly be a good idea?

Another interpretation:

Dropout is training a large ensemble
of models (that share parameters).

Each binary mask is one model, gets
trained on only ~one datapoint.

DropOut

At test time....

Ideally:
want to integrate out all the noise

Monte Carlo approximation:

do many forward passes with
different dropout masks, average all
predictions

DropOut

At test time....
Can in fact do this with a single forward pass! (approximately)

Leave all input neurons turned on (no dropout).

J during test: a = w0*x + w1l *y With p=0.5, using all inputs
a . . in the forward pass would
1 durlng train: inflate the activations by 2x
VRN _ from what the network was
::,\ /,:' E[a] =" (WO*O +w1*0 “used to” during training!
* * => Have to compensate by
WO O + W1 y scaling the activations back
w0 / wi wO*xX + w1*0 down by %
N) wO*x + w1*y)
X LY)
S =% * (2w0*x + 2 w1'y)

=% * (W0*x + w1*y)

Normalization

Batch Normalization

[loffe and Szegedy, 2015]

Normalize: - Improves gradient flow

(k) (k) through the network
zk) = 2 B - Allows higher learning rates

v/ Var[z(¥)] - Reduces the strong
And then allow the network to squash dependence on initialization
the range if it wants to: - Acts as a form of
) () ~(k)) regularization in a funny way,
yw =g\ + 0 and slightly reduces the need

for dropout, maybe

[Fei-Fel Li, Andre| Karpathy, Justin Johnson]

Batch Normalization

[loffe and Szegedy, 2015]

Normalize:
() _ r(k) _ E[at()]
k
\/Var[:v()] Note, the network can learn:
And then allow the network to squash —7(k‘) — \/Var[w(k)]

the range if it wants to:

Bk) — E[z(k)

to recover the identity

y 0 = (K)3(k) 4 g(k)

mapping.

[Fei-Fei Li, Andre| Karpathy, Justin Johnson]

Batch Normalization

Input: Values of x over a mini-batch: B = {z1_,, };
Parameters to be learned: ~, 3

Output: {y-,- = Bqu.,’z:s(-’lfzi)}

// mini-batch mean

// mini-batch variance

// normalize

// scale and shift

[loffe and Szegedy, 2015]

Note: at test time BatchNorm layer
functions differently:

The mean/std are not computed
based on the batch. Instead, a single
fixed empirical mean of activations
during training is used.

(e.g. can be estimated during training
with running averages)

[Fei-Fei Li, Andre| Karpathy, Justin Johnson]

Batch Normalization

Batch Normalization [loffe and Szegedy, 2015]

|

FC | Usually inserted after Fully
BlN ~ Connected / (or Convolutional, as
, we’'ll see soon) layers, and before
tth / nonlinearity.
FC |
BN " Problem: do we ZE(k) . 513() — E[ﬂ?()]
- necessarily want a unit . %)
tanh gaussian input to a \/VM[x]
~ tanh layer?

[Fei-Fei Li, Andre| Karpathy, Justin Johnson]

Ensembles

Model Ensembles

1. Train multiple independent models
2. At test time average their results

Enjoy 2% extra performance

[Fei-Feil Li, Andrej Karpathy, Justin Johnson]

Model Ensembles

Fun Tips/Tricks:

- can also get a small boost from averaging multiple
model checkpoints of a single model.

- keep track of (and use at test time) a running average
parameter vector:

True:
data batch = dataset.sample data batch()
Lloss = network.forward(data batch)

dx = network.backward()
X learning rate * dx
X test = 0.995*x test + 0.005*X

[Fei-Fel Li, Andre| Karpathy, Justin Johnson]

Ayperparameter
Optimization

Hyperparameter
Optimization

Hyperparameters to play with:

- network architecture

- learning rate, its decay schedule, update type
- regularization (L2/Dropout strength)

neural networks practitioner
music = loss function

|Fei-Feil Li, Andre] Karpathy Justin Johnson]

Hyperparameter
Optimization

Cross-validation strategy

| like to do coarse -> fine cross-validation in stages

First stage: only a few epochs to get rough idea of what params work
Second stage: longer running time, finer search
... (repeat as necessary)

Tip for detecting explosions in the solver:
If the cost is ever > 3 * original cost, break out early

[Fei-Fei Li, Andre] Karpathy, Justin Johnson]

Hyperparameter
Optimization

For example: run coarse search for 5 epochs

max count = 100

“gy . .
for count in xrange(max_count): note it's best to optimize
reg = 10**uniform(-5, 5) <
lr = 10**uniform(-3, -6) in Iog Spacel
trainer = ClassifierTrainer()
model = init two layer model(32%32*3, 50, 10) # input size, hidden size, number of classes
trainer = ClassifierTrainer()
best model local, stats = trainer.train(X train, y train, X val, y val,
model, two layer net,
num epochs=5, reg=reg,
update="momentum’', learning rate decay=0.9,

sample batches = True, batch size = 160,
learning rate=1lr, verbose=False)

val acc: 0.412000, lr: 1.405206e-04, reg: 4.793564e-01, (1 / 100)

val acc: 0.214000, lr: 7.231888e-06, reg: 2.321281e-04, (2 / 100)

val acc: 0.208000, lr: 2.119571e-06, reg: 8.011857e+01, (3 / 100)

val acc: 0.196000, lr: 1.551131e-05, reg: 4.374936e-05, (4 / 100)

val acc: 0.079000, lr: 1.753300e-05, reg: 1.200424e+03, (5 / 100)

val acc: 0.223000, lr: 4.215128e-05, reg: 4.196174e+01, (6 / 100)

_ val acc: 0.441000, lr: 1.750259e-04, reg: 2.110807e-04, (7 / 100)
nice val acc: 0.241000, Llr: 6.749231e-05, reg: 4.226413e+01, (8 / 100)
» | val acc: 0.482000, lr: 4.296863e-04, reg: 6.642555e-01, (9 / 100)
val acc: 0.079000, Llr: 5.401602e-06, reg: 1.599828e+04, (10 / 100)
val acc: 0.154000, lr: 1.618508e-066, reg: 4.925252e-01, (11 / 100)

[Fei-Fel Li, Andre] Karpathy, Justin Johnson]

Hyperparameter
Optimization

Now run finer search...

max_count = 160 adjust range max_count = 100

for count in xrangg(max_count): for count in xrange(max count):
reg = 10**uniform(-5, 5) > reg = 10**uniform(-4, 0)
lr = 18**uniform(-3, -6) Lr = 10**uniform(-3, -4)

val acc: 0.527000, lr: 5.340517e-04, reg: 4.097824e-01, (0 / 100)

.512000, lr: .349727e-02, (2

val acc: © 8.680827e-04, reg: 1 / 100)
val acc: 0.461000, lr: 1.028377e-04, reg: 1.220193e-02, (3 / 100)
val acc: 0.460000, 1r: 1.113730e-04, reg: 5.244309e-02, (4 / 100) 0 :
val acc: 0.498000, Lr: 9.477776e-04, reg: 2.001293e-03, (5 / 108) 53% - relatively good
val acc: 0.469000, lr: 1.484369e-04, reg: 4.328313e-01, (6 / 100) for a 2-layer neural net
val acc: 0.522000, lr: 5.586261e-04, reg: 2.312685e-04, (7 / 100) . :
val _acc: 0,530000, Lr: 5.808183e-04, reg: 8,259964e-62, (8 / 108) with 50 hidden neurons.
val acc: 0.489000, Llr: 1.979168e-04, reg: 1.010889%e-04, (9 / 100)
val acc: 0.490000, lr: 2.036031e-04, reg: 2.406271e-03, (10 / 100)
val acc: 0.475000, lr: 2.021162e-04, reg: 2.287807e-01, (11 / 100)
val acc: 0.460000, lr: 1.135527e-04, reg: 3.905040e-02, (12 / 1600)
val acc: 0.515000, lr: 6.947668e-04, reg: 1.562808e-02, (13 / 100)
| wval acc: 0.531000, lr: 9.471549e-04, reg: 1.433895e-03, (14 / 100) |
val acc: 0.509000, Llr: 3.140888e-04, reg: 2.857518e-01, (15 / 160)
val acc: 0.514000, Llr: 6.438349e-04, reg: 3.033781le-01, (16 / 100)
val acc: 0.502000, lr: 3.921784e-04, reg: 2.707126e-04, (17 / 100)
val acc: 0.509000, lr: 9.752279e-04, reg: 2.850865e-03, (18 / 100)
val acc: 0.500000, lr: 2.412048e-04, reg: 4.997821e-04, (19 / 100)
val acc: 0.466000, Llr: 1.319314e-04, reg: 1.189915e-02, (20 / 160)
val acc: 0.516000, lr: 8.039527e-04, reg: 1.528291e-02, (21 / 160)

[Fei-Fei Li, Andre] Karpathy, Justin Johnson]

Hyperparameter
Optimization

Random Search vs. Grid Search

Grid Layout Random Layout

Unimportant parameter

Unimportant parameter

Important parameter Important parameter

Random Search for Hyper-Parameter Optimization
Bergstra and Bengio, 2012

[Fei-Fei Li, Andre| Karpathy, Justin Johnson]

Synaptic Pruning

before pruning after pruning Network Top-1 Error Top-5 Error | Parameters gggp ression
LeNet-300-100 Ref 1.64% - 267K
. LeNet-300-100 Pruned | 1.59% - 22K 12x

pruning LeNet-5 Ref 0.80% - 431K

synapses LeNet-5 Pruned 0.77% - 36K 12x
AlexNet Ref 42.78% 19.73% 61M
AlexNet Pruned 42.77% 19.67% 6. M 9x
VGG-16 Ref 31.50% 11.32% 138M

pruning VGG-16 Pruned 31.34% 10.88% 10.3M 13x

neurons

Train Connectivity

Layer | Weights FLOP Act% Weights% FLOP% * Remaining Parameters ®Pruned Parameters
convl | 35K 21IM 88% 84% 84% som
L conv2 | 307K 448M 52% 38% 3%
r A conv3 | 885K 299M 37% 35% 18%
. convd | 663K 224M 40% 37% 14% ou
Prune Connections convS | 442K 150M 34% 37% 14%
I B fcl | 38M 75SM 36% 9% 3% 15M i
fco | 17M 34M 40% 9% 3% =-E_B
r 2 \ fc3 | 4M 8M 100% 25% 10% N
Train Weiahts [—/ Total | 6IM 1.5B 54% 11% 30% SFSFS ¢
rain Weig

[Fei-Fel Li, Andre| Karpathy, Justin Johnson]

Monitoring the
| earning Process

Double-check that the Loss
IS Reasonable

def init two layer model(input size, hidden size, output size):

model = {}
V] = 0.0001 * np.random.randn(input size, hidden size)

] -
] = np.zeros(hidden size)
] = 0.0001 * np.random.randn(hidden size, output size)

] np.zeros(output size)
mode L

model = init_two_layer model(32*32*3, 50, 1) # Input size, hidden size, number of classes
;l)gizt %;eswg = two layer net(X train, model, y train| 0.0 disable regularization
2.30261216167 ~ —
< loss ~2.3.
“correct “ for returns the loss and the
10 classes gradient for all parameters

[Fei-Fei Li, Andre| Karpathy, Justin Johnson]

Double-check that the Loss
IS Reasonable

def init two layer model(input size, hidden size, output size):

model {}
¥1'] = 0.0001 * np.random.randn(input size, hidden size)
] = np.zeros(hidden size)
] = 0.0001 * np.random.randn(hidden size, output size)
D2"'] np.zeros(output size)
model

model = init two layer model(32%32+%3, 50, 10) # ingui _size, hidden size, number of classes
loss, grad = two layer net X train, model, y train/| le3 crank up regularization
print loss

3.06859716482 \
loss went up, good. (sanity check)

[Fei-Fel Li, Andre| Karpathy, Justin Johnson]

Overfit Very Small Portion of
the Trammg Data

model = init two layer model(32+%32+3, 0)
trainer = ClassifierTrainer ()
X tiny = X train[:20] # take .
y tiny = y train[:20]
best model, stats = tr r.train(X tiny, y tiny, X tiny, y tiny,
d L, tw 1 y -
p h rcg=3 0,
pd ate scd', l 1ing rate decay=l,
pl b t he fal;;,
l ing rate l 3, verbose=True)

The above code:
- take the first 20 examples from
CIFAR-10
- turn off regularization (reg = 0.0)
- use simple vanilla ‘sgd’
[Fei-Fel Li, Andre] Karpathy, Justin Johnson]

model = init two layer model(32%32+*3, 50, 10) # input size, hidden size, number of classes

Lets try to train now trainer = ClassifierTrainer()
s X tiny = X train[:20] # take 20 examples
y tiny = y train[:20]
best model, stats = trainer.train(X tiny, y tiny, X tiny, y tiny,

model, two layer net,
num epochs=200, reg=0.0,

Tip: Make sure that Somplc batches = Fatse;

learning rate=le-3, verbose=True)

you can Overﬂt Very Finished epoch 1 / 208: cost 2.302603, train: 0.400008, val ©.400000, Lr 1.008000e-03 2

Finished epoch 2 / 200: cost 2.302258, train: 0.450000, val ©0.450000, lr 1.000000e-03
= Finished epoch 3 / 200: cost 2.301849, train: 0.600000, val 0.660000, lr 1.000000e-03
Sma" port|0n Of the Finished epoch 4 / 200: cost 2.301196, train: 0.650000, val 0.656000, Lr 1.000008e-03
Finished epoch 5 / 200: cost 2.300044, train: 0.650000, val 0.650000, Lr 1.000000e-03
s = Finished epoch 6 / 200: cost 2.297864, train: 6.550000, val ©.550000, lr 1.000000e-03
tra|n|ng data Finished epoch 7 / 200: cost 2.293595, train: ©.600000, val ©.600000, Lr 1.000000e-03
Finished epoch 8 / 200: cost 2.285096, train: 0.550000, val 0.550000, lr 1.000000e-03
Finished epoch 9 / 200: cost 2.268094, train: 6.550000, val ©.550000, lr 1.000000e-03

Finished epoch 10 / 200: cost 2.234787, train: 0.500000, val 0.500000, lr 1.000000e-03

Finished epoch 11 / 200: cost 2.173187, train: 6.500000, val 0.500000, lr 1.000000e-03

Finished epoch 12 / 200: cost 2.076862, train: 0.500000, val 06.500000, lr 1.000000e-03

Finished epoch 13 / 200: cost 1.974096, train: 0.400000, val 0.400000, lr 1.000000e-03

Finished epoch 14 / 200: cost 1.895885, train: 0.400000, val 0.400000, 1lr 1.000000e-03

Finished epoch 15 / 200: cost 1.820876, train: 0.450000, val 0.450000, lr 1.000000e-03

Finished epoch 16 / 200: cost 1.737430, train: 0.450000, val 0.450000, lr 1.000000e-03

Finished epoch 17 / 200: cost 1.642356, train: 0.500000, val 0.500000, lr 1.000000e-03

Very Sma” IOSS Finished epoch 18 / 200: cost 1.535239, train: 0.600000, val ©.600000, Lr 1.000000e-03

- Finished epoch 19 / 200: cost 1.421527, train: 0.600000, val 0.600000, 1lr 1.000000e-03 .
Fldadabhad acnaab NA 1 NAN. aaad 1 NANAETIEN Sumndew. N s wemdl N connnn T % AAAAANL. AN

— i — - T T — e -—reeeeeey @ Beeeeeeee o=

traln aCCU racy 1 OO Fin;shed epoch 195 / 200: cost 0.002694, tra@n: 1.000000, val 1.000000, lr 1.000000e-03
- = Finished epoch 196 / 200: cost ©.002674, train: 1.000000, val 1.000000, lr 1.000000e-03

. Finished epoch 197 / 200: cost 0.002655, train: 1.008000, val 1.000000, lr 1.000000e-03
nlce| Finished epoch 198 / 200: cost ©.002635, train: 1.000000, val 1.000000, lr 1.000000e-03
M Finished epoch 199 / 200: cost ©.002617, train: 1.008000, val 1.000000, lr 1.600000e-03

Finished epoch 200 / 200: cost ©.002597, train: 1.008600, val 1.000000, lr 1.600000e-03

finished optimization. best validation accuracy: 1.000800

[Fei-Fei Li, Andre] Karpathy, Justin Johnson]

. model = init two layer model(32*32*3, 50, 10) # input size, hidden size, number of classes
Lets try to traln now trainer = ClassifierTrainer()
. best model, stats = trainer.train(X train, y train, X val, y val,
model, two layer net,
num epochs=10, reg=0.000001,
update='sgd’', learning rate decay=1,
e,
learning rate=le-6,|verbose=True)

| like to start with small

: : Finished epoch 1 / 10:|cost 2.302576, |trair: ©0.080000, 1 6.103000, 1lr 1.000000e-06
regUIBrlzatlon and ﬁnd Finished epoch 2 / 10:|cost 2.302582, |train: ©.121000, 1 6.124000, 1lr 1.000000e-06
Finished epoch 3 / 10:|cost 2.302558, [trair: ©0.119000, L 6.138000, lr 1.000000e-06
|eal'nln rate that Finished epoch 4 / 10:|cost 2.362519, |trair|: ©.127600, al ©.151000, lr 1.600000e-06
S; Finished epoch 5 / 10:|cost 2.302517, |train: ©.158000, 1 6.171000, 1r 1.000000e-06
Finished epoch 6 / 10:|cost 2.302518, |trairn: ©.179000, 1 6.172000, lr 1.000000e-06
makes the IOSS go Finished epoch 7 / 10:|cost 2.362466, [trairl: ©.180060, al ©.176660, lr 1.660000e-06
Finished epoch 8 / 10:|cost 2.302452, |train: 0.175000, L 6.185000, lr 1.000000e-06
Finished epoch 9 / 10:|cost 2.302459, |trair: ©.206000, 1 6.192000, lr 1.000000e-06

down Finished epoch 10 / 10} cost 2.302420| train: 0.190000, jval ©.192000, lr 1.000000e-06

) finished optimization..hesi_ualidaxinl accuracy: 0. 0

Loss barely changing: Learning rate is
loss not going down: probably too low

learning rate too low Notice train/val accuracy goes to 20%

though, what’s up with that? (remember
this is softmax)

[Fei-Fel Li, Andre| Karpathy, Justin Johnson]

model = init two layer model(32*32%3, 50, 10) # input size, hidden size, number of cl

Lets try to train nOW_ .. trainer = ClassifierTrainer()

best model, stats = trainer.train(X train, y train, X val, y val,
model, two layer net,
num epochs=16, reg=0.000001,
update='sgd', learning rate decay=1,
sample batches = True,

I Iike to Start With Sma" learning ra:e=h-6, verbose=True)
regularization and find |

learning rate that Okay now lets try learning rate 1e6. What could
makes the loss go possibly go wrong?

down.

loss not going down:
learning rate too low

[Fei-Fei Li, Andrej] Karpathy, Justin Johnson]

model = init two layer model(32*32%3, 50, 10) # input size, hidden size, number of classes

Lets try to train nOW_ .. trainer = ClassifierTrainer()

best model, stats = trainer.train(X train, y train, X val, y val,
model, two layer net,
num epochs=10, reg=0.000001,
update='sgd', learning rate decay=1,
sample batches = True,

I Iike to Start With Sma" learning rate=le6, verbose=True)

/home/karpathy/cs231n/code/cs231n/classifiers/neural net.py:50: RuntimewWarning: divide by zero en

regLIIarization and ﬁnd coggzgifgsing?gp.sum(np.log(probs[range(u). yl)) / N

/home/karpathy/cs231n/code/cs231n/classifiers/neural net.py:48: RuntimeWarning: invalid value enc

learning rate that
probs = np.exp(scores - np.max(scores, axis=1, keepdims=True))
Finished epoch 1 / 10: cost nan, train: 0.091000, val 0.087000, lr 1.000000e+06

makes the IOSS go Finished epoch 2 / 10: cost nan, train: 0.095000, val 0.087000, lr 1.000000e+06

Finished epoch 3 / 10: cost nan, train: 6.100008, val 6.087060, lr 1.000000e+06

cost: NaN almost
always means high
learning rate...

loss not going down:
learning rate too low
loss exploding:
learning rate too high

[Fei-Fel Li, Andre| Karpathy, Justin Johnson]

Monitor and visualize the loss curve

25

loss

20}

low learning rate

high learning rate

good learning rate

00! epoch

20 40 &0 80 100

|[Fei-Feil Li, Andrej Karpathy, Justin Johnson]

Loss
~ Bad initialization
a prime suspect

time

[Fei-Fei Li, Andre| Karpathy, Justin Johnson]

Monitor and visualize the accuracy:

0.80

075 |

0.70

Clasification accurac
L=
o
O

LRSS
%

nJ

MWV
w/\,\ﬂ\/\/\/ | big gap = overfitting

|
| f\«f/w;w AN A

=2 increase regularization strength?

Nno gap
=> increase model capacity?

— Training accuracy
— Validation accuracy

:::::

&0 80 100

[Fei-Fei Li, Andre| Karpathy, Justin Johnson]

Track the ratio of weight updates / weight magnitudes:

assume parameter vector W and 1ts gradient vector dw
param scale = np.linalg.norm(W.ravel())

update = -learning rate*dW # simple SGD update

update scale = np.linalg.norm(update.ravel())

W += update # the actual update

print update scale / param scale # want ~le-3

ratio between the values and updates: ~ 0.0002 / 0.02 = 0.01 (about okay)
want this to be somewhere around 0.001 or so

[Fei-Fei Li, Andrej Karpathy, Justin Johnson]

Transtfer Learning

“ConvNets need a lot %\
of data to train” V

finetuning! we rarely ever
train ConvNets from scratch.

[Fei-Fel Li, Andre| Karpathy, Justin Johnson]

Transtfer Learning

1. Train on ImageNet 2. Finetune network on
B N your own data

ImageNet data T

C._data, >~

[Fei-Fei Li, Andre| Karpathy, Justin Johnson]

Transtfer Learning

i . i . .
5 1. Train on -~ S 2. |If small dataset: fix ~mee 3. If you have medium sized

“™® - ImageNet e all weights (treat CNN evet dataset, “finetune” instead:

maxpool maxpool as fixed feature — use the qld welghts as

conv-128 conv-128 extractor), retrain only — initialization, train the full

conv-128 conv-128 the classifier conv-128 network or only some of the

mexpoal maxpoct maxpool higher layers

e com?®. i.e. swap the Softmax cone 256

—— ——— layer at the end == retrain bigger portion of the

— — —— network, or even all of it.

conv-512 conv-512 conv-512

maxpool maxpool maxpool

conv-512 conv-512 conv-512

conv-512 conv-512 conv-512

maxpool maxpool maxpool

FC-4096 FC-4096 FC-4096

FC-4096 FC-4096 FC-4096

FC-1000 FC-1000 FC-1000

softmax softmax softmax

[Fei-Fel Li, Andre| Karpathy, Justin Johnson]

