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A Brief History of
Neural Networks



HIStory

Time Event
1943 McCulloch + Pitts introduce a simplified mathematical model of neurons as
computing ANDs and ORs: capable of basic Logic but no Learning yet.
They prove theorems about expressive power.
1949 Hebb introduces the first neurobiological learning rule:
“Neurons that fire together, wire together.”
1950s Computers are in their infancy.
MADALINE: The first NN for commercial use: designed for adaptive
filtering of echoes in phone lines (1959). Still in use today!!
1962 Rosenblatt introduces the Perceptron. It learns!
Hubel + Wiesel describe simple and complex cells in visual area V1
(inspiration for later NNs: S-->template matching for pattern specificity
and C-->pooling for robustness to nuisances).
1969- Minsky and Papert deal “deathblow” to Perceptrons by showing they can’t
1981 learn XOR. Later, others showed this wasnt true for deep NNs.

“NN Winter”: excessive hype and outrageous claims lead to dying
interest/funding.
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How do neurons communicate?

 Animations of excitatory and inhibitory neuron:

e hitps://nba.uth.tmc.edu/neuroscience/s1/introduction.html



https://nba.uth.tmc.edu/neuroscience/s1/introduction.html

McCulloch-Pitts Neurons (1943)

LOGICAL CALCULUS OF IDEAS
IMMANENT IN NERVOUS ACTIVITY

Bulletin of Mathematical Biophysics 5:115-133 (1943)



Assumptions (drawn from Empirical Observations)

1. The activity of the neuron is an “all-or-none’ process.

2. A certain fixed number of synapses must be excited
within the period of latent addition in order to excite

a neuron at any time, and this number is independent
of previous activity and position of the neuron.

3. The only significant delay within the nervous system
IS synaptic delay.

4. The activity of any inhibitory synapse absolutely
prevents excitation of the neuron at that time.

5. The structure of the net does not change with time.



McCulloch-Pitts Neurons
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McCulloch-Pitts Nets

A McCulloch-Pitts Net is a directed graph G with McCulloch-Pitts

neurons as nodes and edges marked as either excitatory or

inhibitory.

If G is acyclic it is called a feed-forward net. Stefan Droste
Otherwise, G is called recursive net.

In recursive McCulloch-Pitts nets, each neuron computes an
output Iin 1 time step.



Expressive Power of McCulloch-Pitts Nets

Feed-forward McCulloch-Pitts nets can compute any Boolean
function f : {0,1}" — {0,1}™.

X1 X1
X1
X2 X2

Stefan Droste

Recursive McCulloch-Pitts nets can simulate any deterministic
finite automaton (DFA).



Why is it iImportant’

A formalism whose refinement and
generalization led to the notion of “finite
automata”

A technique that inspired the notion of logic
design

The first use of computation to address the
mind-body problem

The first modern computational theory of
mind and brain



Aside: The Tragic Story of Walter Pitts

Must read: http://nautil.us/issue/21/information/the-man-
who-tried-to-redeem-the-world-with-logic

 [he downfall of universal expressive power: it does not
orovide any constraint on the microscopic mechanisms
by which a NN computes.



http://nautil.us/issue/21/information/the-man-who-tried-to-redeem-the-world-with-logic
http://nautil.us/issue/21/information/the-man-who-tried-to-redeem-the-world-with-logic
http://nautil.us/issue/21/information/the-man-who-tried-to-redeem-the-world-with-logic

Question:
What are the problems/limitations of
expressive power? (1-2 min)



Question:

What are the problems/limitations of
expressive power? (1-2 min)
Answer:

EXpressabllity does not imply Learnability



EXpressabpility vs. Learnability
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How can Neurons learn” Hebb’s Postulate

“When an axon of cell A 1s near enough to excite a cell B and
repeatedly or persistently takes part in firing it, some growth
process or metabolic change takes place in one or both cells such
that A’s efficiency, as one of the cells firing B, 1s increased.”

—— D. O. Hebb, 1949

NS




How do neurons process visual input”

 Hubel and Wiesel’s incredible discovery (1962):

o https://www.youtube.com/watch?v=I0Hayh06l J4

 Awarded Nobel Prize in Physiology and Medicine


https://www.youtube.com/watch?v=IOHayh06LJ4

The Perceptron (Rosenblatt 1957)
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Minsky & Papert Deal a "Deathblow”
to the Perceptron: The XOR Problem
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Question:
How can you prove that the XOR Problem
s not linearly separable” (4 min)



Answer: Proof by Contradiction

wix + woy = w10 + wo0 < 0
w1z + woy = w10 + wal > 6

w1w+w2y:w11+wW\2 7,

Greater than zero.

WIT + WY = w1l + w2l < 6 Impossible, given above.



Final Project Idea: MicroNetwork Motifs

A. Feedforward excitation D. Lateral inhibition

..'. -] Excitation

I I .—%4 ) INibition
B. Feedforward inhibition E. Feedback/Recurrent inhibition F. Feedback/Recurrent excitation
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C. Convergence/divergence
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HIStory

1970 +-
10 years

Backpropagation (Gradient Descent for nested functions via Chain Rule)
explored in various contexts (both NN-specific and general).

1979

Fukushima introduces the Neocognitron. It foreshadows current deep NNss:
convolutional layers, weight replication, and WTA-subsampling.
However its unsupervised.

1982

Hopfield Nets: RNNs with binary units that can serve as an
content-addressable associative memory (given a partial/wrong pattern, it
will complete/correct it to the most similar memory). Revival of interest
ensued.

1986

Werbos, Rumelhart + Hinton Williams revive Backprop for NNs.
Hinton and Smolensky introduce (Restricted) Boltzmann machines
(R)BMs.

1989

LeCun applies Backprop to Fukushima’s Neocognitron to do supervised
leaming. This is the first incarnation of modern convolutional neural nets
(CNNs). Subsequently used by US Post Office for address reading.

1990

Baird introduces the idea of data augmentation: adding
transformed/deformed versions of original input data to increase size of
training dataset.

1991-5

Fundamental Problem of DL: vanishing/exploding gradients plague deep
FFNNs and RNNs. Hochreiter + Schmidhuber introduce LSTM RNNs
(1995-7) to address this. LSTMs are critical to solving problems requiring a
real memory (e.g. widely spaced events in time are important.)




Neocognitron: Precursor to Modern Convnets

Fukushima (1980). Hierarchical multilayered neural network
U

S
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S-cells work as feature-extracting cells. They resemble simple cells of the
primary visual cortex in their response.

C-cells, which resembles complex cells in the visual cortex, are inserted in the
network to allow for positional errors in the features of the stimulus. The input
connections of C-cells, which come from S-cells of the preceding layer, are fixed
and invariable. Each C-cell receives excitatory input connections from a group
of S-cells that extract the same feature, but from slightly different positions. The
C-cell responds if at least one of these S-cells yield an output.



Key |dea: Alternating Selectivity and Invariance

» Hubel and Wiesel's discovery of simple/complex cells and their special properties of
selectivity and tolerance/invariance
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DiCarlo, J. J. et al. How does the brain solve visual object recognition? Neuron (2012).

Key Inspiration from Neuroscience

Build up feature selectivity and tolerance over multiple layers in a hierarchy =
ML architectures: Neocognitron, HMAX, SIFT, and modern Deep Convnets




Recurrent Neural Networks:
Hopftield Nets

» A feedback neural network has feedback loops from
its outputs to its inputs. The presence of such loops
has a profound impact on the learning capability of
the network.

» After applying a new 1nput, the network output 1s

calculated and fed back to adjust the input. This
process 1s repeated until the outcome becomes
constant.

* John Hopfield (1982)

— Associative Memory via artificial neural networks
— Optimisation



Hopfield Nets:
Mathematical Definition
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Hopfield Nets:
Engineering the Attractor

e Attractor
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Hopfield Nets as Associative Memory

* Nature of associative memory
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How to Learn NNs”
The Backpropagation Algorithm (1960-86)
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How to Learn NNs”
The Backpropagation Algorithm (1960-86)

‘ . Chain rule
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The History of
the Backpropagation Algorithm (1960-86)

Introduced in Control Theory, via Dynamic Programming [Henrey J. Kelley (1960)
& Arthur Bryson (1961)]

Simpler derivation using Chain Rule [Stephen Dreyfus (1962)]

General method for Automatic Differentiation [Seppo Linnainamaa (1970)]

Using Backprop to estimating parameters of controllers with objective of
minimizing error [Stuart Dreytus (1973)]

Backprop brought into NN world [Paul Werbos (1974)]

Used BP to learn representations in hidden layers of NNs [Rumelhart, Hinton &
Williams (19806)]



Solving Digit Recognition for the US Post Office:

(Yann Lecun 1989)
Trained with Backprop. L0327 - Z/Llf & 906

USPS Zipcode digits: 7300 training, 2000 test.
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10 output units  pEl -—--eme---
fully connected

~ 300 links 06-45
layer H3 pooooooo DF\ 8 F\K i 3-4_*3
30 hidden units fullgoocoor}picted

~ inks
layer H2 _ gﬁ’(ﬂz 7 (ﬂé
12 x 16=192 ., ; LN H2.12
hidden units - » ~ 40,000 links , : !

from 12 kernel 3 o« :
B SSKE0 e

layer H1 " n

12 X 64 = 768 g 1 ) [
hidden units
H1.1

16) 17194857365 U322eh1E1286
£35£97202993997225100%¢701

M ~20,000 links 308844459101 06 15406103463 |
from 12 kernels (OLY111030475202009919966
5x5 BI 1 ADSLIC8SSFIDINRA?9554¢60

Lol 2301871 129930%797109%8 4
010970759733 1972015581705%
[074810aSS(E=814Y3)809101763
| 787SN1(8SYLB359L0354E608S
] 8255)1063030#7501317401

256 input units

“um - pea AR ]
TR




_ong Short-Term Memory Recurrent Neural
Networks (Hochreiter & Schmidhuber,1992)
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HIStory

1992

Weng introduces the Cresceptron and Max-Pooling. Critical for current
DNNs. Wavelets and Multi-resolution analysis of images are introduced
(but no learning).

1999-2004

Riesenhuber Poggio introduce HMAX: a hierarchical model of visual
cortex. Lowe introduces SIFT, scale-invariant feature transform, that is
partially inspired by selectivity/invariance properties described in HMAX.
SIFT is deep (multi-scale descriptor) but there is no learning.

2001

Breimann introduces Random Decision Forests (RFs): a combination of
Bagging and randomly dropping features in order to prevent overfitting that
was so common in decision trees. RFs are employed in many modern day
image segmentation tasks in Medical Imaging and for pose estimation in 3D
Gaming (Kinect). They also do “unreasonably” well in many ML
competitions.

2006-7

Hinton and Salaktudinov use unsupervised pre-training + supervised
fine-tuning to train Deep RBMs, setting new records on MNIST.




HIStory

2006-7 Hinton and Salaktudinov use unsupervised pre-training + supervised
fine-tuning to train Deep RBMs, setting new records on MNIST.

2006-10 GPU implementations of BP that are up to 50x faster than CPU are
introduced, and can process lots more data in the same time. Emphasized
that advances in hardware and Big Data may be more important than specific
NN architecture.

2011 Martens and Sutskever introduce Hessian-Free Optimization: a training
algorithm for RNNs that can alleviate vanishing gradient problem.

2012 - Krizhevsky and Hinton show that CNNs can win ImageNet competition. A

present resurgence of interest in DL: Lots more Contests and Benchmarks advanced.

And the hype is back as well!
A new Theory of Deep Learning (developed here at Rice) that shows the
probabilistic origin of deep CNNs and RFs.

Generative model = Probabilistic Inference = NN relaxation




G

Order of magnitude increase in
speed of training

Nvidia is the major player; Intel and
others lagging behind.

New Tensor Processing Units
(TPUs) being offered by Google

Graphical Processing Units (GPUs)
revolutionize Deep Learning

PUs first introduced in 2006 for DL




lmageNet Dataset (2011): The Largest Hand-
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Convnets dominate ImageNet Challenge (2012)

AlexNet

 Similar framework to LeCun’98 but:

* Bigger model (7 hidden layers, 650,000 units, 60,000,000 params)
* More data (10° vs. 10° images)

* GPU implementation (50x speedup over CPU)
* Trained on two GPUs for a week
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A. Krizhevsky, I. Sutskever, and G. Hinton,
ImageNet Classification with Deep Convolutional Neural Networks, NIPS 2012




Deep Learning:
Recent Applications to Neuroscience

Recent Finding: Best model
of neural activations In

ventral stream (V1 to IT) is a ! -
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D. Yamins, H. Hong, C. Cadieu, E. Solomon, D. Seibert, and J. J. DiCarlo.
Performance-optimized hierarchical models predict neural responses in higher visual cortex. PNAS 2014



Deep Learning:

Recent Applications to Neuroscience
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D. Yamins, H. Hong, C. Cadieu, E. Solomon, D. Seibert, and J. J. DiCarlo.
Performance-optimized hierarchical models predict neural responses in higher visual cortex. PNAS 2014

The Implication

A better understanding of Deep Convolutional Nets may lead to
a better understanding of the Visual Cortex



Conclusions

* History of NNs touches upon many different fields and ideas:
* Neuroscience, Cognitive Science, Mind-Body problem
» Boolean functions, logic, expressive power
 "“Machine” Learning, Optimization

* Chock full of interesting ideas that were far ahead of their time:

 Many of them are resurging now —> Final Projects or your own
research??



