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Signing Special Registration Forms

• E-mail me and CC Marci Wilson <mlw8@rice.edu> who can sign 
forms on my behalf (provided I approve). 

• If you are from outside Rice, please coordinate with an administrator 
at your institution who can consolidate your Institution’s required 
forms (from all registrants from your institution) 

• After that you will have Rice NetID and access to Rice Canvas

mailto:mlw8@rice.edu,%20abp4@rice.edu?subject=Special%20Registration%20for%20ELEC/COMP576


About Me
• Education

• Ph.D in Applied Mathematics/Computer Science (Harvard 2008) 

• Industry (building real-time inference systems)

• MIT Lincoln Laboratory: Ballistic Missile Defense (2 years) 

• High-Frequency Trading (4 years): fast inference on extremely large datasets 

• Return to Academia 

• Postdoc (Rich Baraniuk): theory of deep learning 

• New Faculty at Baylor College of Medicine (Neuroscience), joint with Rice ECE: check out 
ankitlab.co for more details about my lab’s mission at the intersection of deep learning and 
computational neuroscience

http://ankitlab.co


Adapting to a Fully Online Course
• Motivation: It can wane more easily. Attention spans can shorten. 

• Need for more Interaction: active participants should be even more active if possible; especially helpful 
to the less active 

• Via Chat if not Voice: one TA will be “Voice of the Chat” 

• Piazza (introduce yourself with a short blurb!) 

• Considering a Virtual gathering to facilitate formation of final project teams 

• More Diversity: I will try to  

• Mix in diverse types of media 

• More interactive exercises 

• More breaks (if needed)



Deep Learning: 
A Short Preview



Why do we need Deep Learning?What makes Object Recognition so Hard?

aeroplane bicycle bird car

[Girshick et al., CVPR 2014]

Key Challenge: Object recognition (and sensory perception in general) is plagued by
large amounts of nuisance variation.

I Nuisance Variation: affects sensory input (image) but not the task target (object class)

I Ex: Object Recognition, Nuisances = changes in location, pose, viewpoint, lighting,
expression, . . .

I Ex: Speech Recognition, Nuisances = changes in pitch, volume, pace, accent, . . .

I Nuisance variables are task-dependent and can be implicit
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Why do we need Deep Learning?Disentangling Variation in the Sensory Input

Problem: How to deal with nuisance

variation in the input?

Solution: Build representations that are

I Selective: Sensitive to task-relevant

(target) features

I Invariant: Robust to task-irrelevant

(nuisance) features

I Multi-task: Useful for many different

tasks

that this perspective is a crucial intermediate level of under-
standing for the core recognition problem, akin to studying aero-
dynamics, rather than feathers, to understand flight. Importantly,
this perspective suggests the immediate goal of determining
how well each visual area has untangled the neuronal represen-
tation, which can be quantified via a simple summation decoding
scheme (described above). It redirects emphasis toward deter-
mining the mechanisms that might contribute to untangling—
anddictateswhatmust be ‘‘explained’’ at the single-neuron level,
rather than creating ‘‘just so’’ stories based on the phenomenol-
ogies of heterogenous single neurons.

Figure 2. Untangling Object
Representations
(A) The response pattern of a population of visual
neurons (e.g., retinal ganglion cells) to each image
(three images shown) is a point in a very high-
dimensional space where each axis is the
response level of each neuron.
(B) All possible identity-preserving transforma-
tions of an object will form a low-dimensional
manifold of points in the population vector space,
i.e., a continuous surface (represented here, for
simplicity, as a one-dimensional trajectory; see
red and blue lines). Neuronal populations in early
visual areas (retinal ganglion cells, LGN, V1)
contain object identity manifolds that are highly
curved and tangled together (see red and blue
manifolds in left panel). The solution to the
recognition problem is conceptualized as a series
of successive re-representations along the ventral
stream (black arrow) to a new population repre-
sentation (IT) that allows easy separation of one
namable object’s manifold (e.g., a car; see red
manifold) from all other object identity manifolds
(of which the blue manifold is just one example).
Geometrically, this amounts to remapping the
visual images so that the resulting object mani-
folds can be separated by a simple weighted
summation rule (i.e., a hyperplane, see black
dashed line; see DiCarlo and Cox, 2007).
(C) The vast majority of naturally experienced
images are not accompanied with labels (e.g.,
‘‘car,’’ ‘‘plane’’), and are thus shown as black
points. However, images arising from the same
source (e.g., edge, object) tend to be nearby in
time (gray arrows). Recent evidence shows that
the ventral stream uses that implicit temporal
contiguity instruction to build IT neuronal toler-
ance, and we speculate that this is due to an
unsupervised learning strategy termed cortical
local subspace untangling (see text). Note that,
under this hypothetical strategy, ‘‘shape coding’’
is not the explicit goal—instead, ‘‘shape’’ infor-
mation emerges as the residual natural image
variation that is not specified by naturally occurring
temporal contiguity cues.

2. What Do We Know about the
Brain’s ‘‘Object’’ Representation?
The Ventral Visual Stream Houses
Critical Circuitry for Core Object
Recognition
Decades of evidence argue that
the primate ventral visual processing
stream—a set of cortical areas arranged
along the occipital and temporal lobes

(Figure 3A)—houses key circuits that underlie object recognition
behavior (for reviews, see Gross, 1994; Miyashita, 1993; Orban,
2008; Rolls, 2000). Object recognition is not the only ventral
stream function, and we refer the reader to others (Kravitz
et al., 2010; Logothetis and Sheinberg, 1996; Maunsell and
Treue, 2006; Tsao and Livingstone, 2008) for a broader discus-
sion. Whereas lesions in the posterior ventral stream produce
complete blindness in part of the visual field (reviewed by Stoerig
and Cowey, 1997), lesions or inactivation of anterior regions,
especially the inferior temporal cortex (IT), can produce selective
deficits in the ability to distinguish among complex objects

418 Neuron 73, February 9, 2012 ª2012 Elsevier Inc.

Neuron

Perspective

DiCarlo, J. J. et al. How does the brain solve visual object recognition? Neuron (2012).

The Holy Grail of Machine Learning
Learn a disentangled representation:

one that factors out variation in the sensory input
into meaningful intrinsic degrees of freedom.
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Why do we need Deep Learning?How to Disentangle Nuisance Variation?

Potential Solution: Look to the Brain for guidance.
I Hubel and Wiesel’s discovery of simple/complex cells and their special properties of

selectivity and tolerance/invariance

Testing Hypotheses: Instantiated Models of the Ventral
Stream
Experimental approaches are effective at describing undocu-
mented behaviors of ventral stream neurons, but alone they
cannot indicate when that search is complete. Similarly, ‘‘word
models’’ (including ours, above) are not falsifiable algorithms.
To make progress, we need to construct ventral-stream-
inspired, instantiated computational models and compare their
performance with neuronal data and human performance on
object recognition tasks. Thus, computational modeling cannot
be taken lightly. Together, the set of alternative models define
the space of falsifiable alternative hypotheses in the field, and
the success of some such algorithms will be among our first indi-
cations that we are on the path to understanding visual object
recognition in the brain.
The idea of using biologically inspired, hierarchical computa-

tional algorithms to understand the neuronal mechanisms under-
lying invariant object recognition tasks is not new: ‘‘The mecha-
nism of pattern recognition in the brain is little known, and it
seems to be almost impossible to reveal it only by conventional
physiological experiments.. If we could make a neural network

Figure 6. Serial-Chain Discriminative
Models of Object Recognition
A class of biologically inspired models of object
recognition aims to achieve a gradual untangling
of object manifolds by stacking layers of neuronal
units in a largely feedforward hierarchy. In this
example, units in each layer process their inputs
using either AND-like (see red units) and OR-like
(e.g., ‘‘MAX,’’ see blue units) operations, and those
operations are applied in parallel in alternating
layers. The AND-like operation constructs some
tuning for combinations of visual features (e.g.,
simple cells in V1), and the OR-like operation
constructs some tolerance to changes in, e.g.,
position and size by pooling over AND-like units
with identical feature tuning, but having receptive
fields with slightly different retinal locations and
sizes. This can produce a gradual increase of the
tolerance to variation in object appearance along
the hierarchy (e.g., Fukushima, 1980; Riesenhuber
and Poggio, 1999b; Serre et al., 2007a). AND-like
operations and OR-like operations can each be
formulated (Kouh and Poggio, 2008) as a variant of
a standard LN neuronal model with nonlinear gain
control mechanisms (e.g., a type of NLN model,
see dashed frame).

model which has the same capability for
pattern recognition as a human being, it
would give us a powerful clue to the
understanding of the neural mechanism
in the brain’’ (Fukushima, 1980). More
recent modeling efforts have significantly
refined and extended this approach (e.g.,
Lecun et al., 2004; Mel, 1997; Riesen-
huber and Poggio, 1999b; Serre et al.,
2007a). While we cannot review all the
computer vision or neural network
models that have relevance to object
recognition in primates here, we refer

the reader to reviews by Bengio (2009), Edelman (1999), Riesen-
huber and Poggio (2000), and Zhu and Mumford (2006).
Commensurate with the serial chain, cascaded untangling

discussion above, some ventral-stream-inspired models imple-
ment a canonical, iterated computation, with the overall goal of
producing a good object representation at their highest stage
(Fukushima, 1980; Riesenhuber and Poggio, 1999b; Serre
et al., 2007a). These models include a handful of hierarchically
arranged layers, each implementing AND-like operations to build
selectivity followed by OR-like operations to build tolerance to
identity preserving transformations (Figure 6). Notably, both
AND-like and OR-like computations can be formulated as vari-
ants of the NLNmodel class described above (Kouh and Poggio,
2008), illustrating the link to canonical cortical models (see inset
in Figure 6). Moreover, these relatively simple hierarchical
models can produce model neurons that signal object identity,
are somewhat tolerant to identity-preserving transformations,
and can rival human performance for ultrashort, backward-
masked image presentations (Serre et al., 2007a).
The surprising power of suchmodels substantially demystifies

the problem of invariant object recognition, but also points out

Neuron 73, February 9, 2012 ª2012 Elsevier Inc. 427

Neuron

Perspective

DiCarlo, J. J. et al. How does the brain solve visual object recognition? Neuron (2012).

Key Inspiration from Neuroscience
Build up feature selectivity and tolerance over multiple layers in a hierarchy )
ML architectures: Neocognitron, HMAX, SIFT, and modern Deep Convnets
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Neural Networks

• Takes in inputs and returns outputs 

• Layers of processing: alternates between linear and nonlinear 
transformations typically 

• High expressive power / can be trained to learn complex functions 

• (Loosely) Inspired by the brain



Object Recognition with ConvnetsDeep Learning: The Current State of the Art

A. Krizhevsky et al. ImageNet classification with deep convolutional neural networks (NIPS 2012)

I Deep Convnets

I 2012: Krizhevsky et al advanced state-of-the-art in object recognition in the
ImageNet Challenge (1.2 million labeled images of objects)

I Subsequently benchmarks in many other vision tasks were pushed forward many
years ) Transfer Learning

I Recently, Google’s and MSR’s latest DCNs have achieved 95% accuracy, with
superhuman performance in most categories

I Deployed commercially in Google and Baidu Personal Image Search
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Object Recognition with Convnets



Facial Recognition/Verification



Deep Art: Combining Content and Style  
from Different Images

The Power of Deep Representations:
Separating Content from Style in Art

I Coarse-scale Content

from one image,
Fine-scale Style from
another image

I Observation: DCNs
learn sophisticated
multi-scale
representations

I Theoretical Result:

Mathematical
formulation of
separation of length
scales ) levels of
abstraction

Figure 2: Images that combine the content of a photograph with the style of several well-known
artworks. The images were created by finding an image that simultaneously matches the content
representation of the photograph and the style representation of the artwork (see Methods). The
original photograph depicting the Neckarfront in Tübingen, Germany, is shown in A (Photo:
Andreas Praefcke). The painting that provided the style for the respective generated image
is shown in the bottom left corner of each panel. B The Shipwreck of the Minotaur by J.M.W.
Turner, 1805. C The Starry Night by Vincent van Gogh, 1889. D Der Schrei by Edvard Munch,
1893. E Femme nue assise by Pablo Picasso, 1910. F Composition VII by Wassily Kandinsky,
1913.

5

L. Gatys, A. Ecker, M. Bethge

A Neural Algorithm of Artistic Style (ArXiV 2015: eprint arXiv:1508.06576)

25



Many Medical Applications



Playing Video Games

https://www.youtube.com/watch?v=V1eYniJ0Rnk

https://www.youtube.com/watch?v=V1eYniJ0Rnk


Playing AlphaGo



Self-Driving Cars

https://www.youtube.com/watch?v=QpWTyFIUvYk

https://www.youtube.com/watch?v=QpWTyFIUvYk


Deep Sensorimotor Learning for Robotics

https://www.youtube.com/watch?v=Es83Co_Vz78

https://www.youtube.com/watch?v=Es83Co_Vz78


Generative Models for Natural Images



Generative Adversarial Nets (GANs)  
for Natural Image Translation

https://arxiv.org/pdf/1703.10593.pdf

https://arxiv.org/pdf/1703.10593.pdf


Progressive Growing of 
Generative Adversarial Nets (GANs) 

Youtube

https://github.com/tkarras/progressive_growing_of_gans

https://www.youtube.com/watch?v=G06dEcZ-QTg&feature=youtu.be
https://github.com/tkarras/progressive_growing_of_gans
http://www.apple.com


Generating Shakespeare



Generating Wiki Markup



Generating Linux Source Code



Generating Algebraic Topology



Face Representation in the Brain

values explained by the linear model to quantify the decoding
quality. Overall, the decoding quality for appearance features
was better than that for shape features for AM neurons, while
the opposite was true for ML/MF neurons (Figures 2C and 2D),
consistent with our analysis using STA (Figure 1F). By combining
the predicted feature values across all 50 dimensions, we could

reconstruct the face that the monkey saw. Examples of the re-
constructed faces are shown in Figure 3A next to the actual
faces, using ML/MF data, AM data, and combined data from
both patches. The reconstructions using AM data strongly
resemble the actual faces themonkey saw, and the resemblance
was further improved by adding ML/MF data.

A

B C

Figure 3. Reconstruction of Facial Images Using Linear Regression
(A) Using facial features decoded by linear regression in Figure 2, facial images could be reconstructed. Predicted faces by three neuronal populations and the

corresponding actual stimuli presented in the experiment are shown.

(B) Decoding accuracy as function of number of faces, using a Euclidean distance model (black solid line). Decoding accuracy based on two alternative models,

nearest neighbor in the space of population response (gray dashed line, see STAR Methods) and average of nearest 50 neighbors (gray solid line), were much

lower. The black dashed line represents chance level. Results based on three neuronal populations are shown separately (black solid lines for ML/MF and AM are

the same as the black solid lines for corresponding patches in Figure 2D, except here they are not shown with variability estimated by bootstrapping). In the left

panel, boxes and error bars represent mean and SEM of subjective (human-based) decoding accuracy based on 78 human participants (see STAR Methods:

Human psychophysics).

(C) Decoding accuracy for 40 faces plotted against different numbers of cells randomly drawn from three populations (black, all; blue, ML/MF; red, AM). Error bar

represents SD.

Cell 169, 1013–1028, June 1, 2017 1017

Figure S7. Convolutional Neural Net Trained for View-Invariant Identification Supports Axis Coding, Related to Figure 4
(A) Architecture of convolutional neural network. Two convolution/max pooling layers are followed by two fully connected layers. Inputs were images of 500

identities, each at 9 views and 9 positions. The output compares the features of the 500 units in the final layer and determines the identity in the image.

(B) After training, 2,000 parameterized facial images were loaded to the network, and the STA for each unit was computed. The distribution of feature preference

indices for the final layer are shown alongside the distribution for AM and ML/MF.

(C) Same as Figure 4A, but for the final layer of the convolutional neural network. Sparseness and noise were matched to AM neurons.

(D) The strength of nonlinearity, quantified by the ratio between surround and center of the Gaussian fit (c.f. Figure 4F), is plotted against sparseness for the final

layer of the neural network and two other models (same as Figure 4). Box and error bar represent mean and s.e. for three sparseness levels.

(E) Same as (D) but for the absolute difference between the ratio and 1.

(F) Responses of units in the final layer were fitted either by an ‘‘axis’’ model or an ‘‘exemplar’’ model (Figure 4G). Percentage explained variance by each model

are plotted against each other. The axis model explained a high percentage of variance of unit responses (mean = 80.0%), significantly higher than the exemplar

model (mean = 67.5%, p < 0.001, Student’s t test). This is surprising since we did not give any information to the network about face space axes; one might have

expected each output unit to show spherical tuning around each of the 500 target faces, given that the job of each output unit was to identify one of the 500

target faces.

Able to predict specific face from Neural Data using a linear decoder. 
Last layer in CNN has the same distribution of activations as the last layer in visual 

cortex 



Formal Language Representations in trained NNs

Studying the hidden state space of 
trained NNs can lead to insights about 

how NNs solve tasks.

https://pair-code.github.io/interpretability/bert-tree/

Michalenko et al. ICLR 2019

https://pair-code.github.io/interpretability/bert-tree/


Natural Language Representations in trained NNs

Studying the hidden state space of SotA trained NNs can lead to insights about 
how NNs solve tasks. We will discuss later in the course about how BERT 

Seems to represent parse trees via Pythagorean embeddings.

https://pair-code.github.io/interpretability/bert-tree/

https://pair-code.github.io/interpretability/bert-tree/


Cracking open the Blackbox:
Probing,Visualizing & Theorizing about 

Neural Networks



Implicit Reg.: Impact of Width for Two Lines
Width = 20 units Width = 40 units Width = 200 units

Ryan Pyle, Justin Sahs, Aneel Damarajju, Ankit Patel



Implicit Reg.: Impact of Width for Smooth Target

Ryan Pyle, Justin Sahs, Aneel Damarajju, Ankit Patel



Implicit Reg.: Impact of Width for Sharp Target

Ryan Pyle, Justin Sahs, Aneel Damarajju, Ankit Patel



A Theoretical Explanation for Implicit Reg. in Kernel Regime: 
3. Compare Predicted Spline to Trained NN

Ryan Pyle, Justin Sahs, Aneel Damarajju, Ankit Patel



Learning Dynamics in GANs: Combining MiniMax + Preconditioning together —> Adaptive Regularization 
—> Discontinuities approximated more sharply and quickly —> greatly improved mode coverage very early on.

Yilong Ju, Weili Nie, Ankit Patel



Visualizing GoogLeNet

• Beautiful work from Chris Olah and Circuits team at OpenAI: 

• https://distill.pub/2020/circuits/early-vision/

https://distill.pub/2020/circuits/early-vision/


Logistics



The Mission
• Observations about Deep Learning (DL) 

1. It works. (Kind of. Finally.)  

2. It has an enormous number of potential applications in a wide variety of 
fields, many of which are just beginning to see DL’s influence. 

3. There is a steep learning curve at the beginning. 

4. You are young and agile. If you invest now, you will reap the benefits. 

• Main Goal of this Course: To jumpstart your ability to use Deep Learning in your 
research. And to provide you a glimpse of whats going on inside the Blackbox…



The Mission
• Main Goal of this Course: To jumpstart your ability to use Deep 

Learning in your research. 

• Designed for students who want to start using DL in their research 

• Myriad applications of DL in many many fields 

• Less Theory, More Doing: This is not a math class (though we will 
cover some exciting aspects of DL theory near the end and some 
potentially large implications)



Course Information

• Course Website:  elec576.rice.edu + Piazza (Discussion Forum)

http://elec576.rice.edu


Questions?


